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Abstract. This paper describes a new approach to feed-forward neural
networks learning based on a random choice of a set of neurons which are
temporally active in the process of neural network weight adaptation.
The rest of the network weights is locked out (frozen). In contrast to
the “dropout” method introduced by Hinton et al. [15], the neurons
(along with their connections) are not removed from the neural network
during training, only their weights are not modified, i.e. stay constant.
This means that in every epoch of training only the random part of the
neural networks (a chosen set of neurons and its connections) adapts.
Freezing of neurons suppresses overfitting and prevents drastic increment
of weights during the learning process, since the overall structure of the
neural networks does not change. In many cases the approach based on
training only some parts of the neural network (subspaces of the weight
space) shortens the time of training. Experimental results for medium
size neural networks used for modeling regression are also provided.

Keywords: Neural network training · Stochastic gradient decent ·
Random subspace optimization · Over-fitting · Deep learning

1 Introduction

In this paper we propose a new strategy of optimization based methods of neural
networks learning. In this strategy only a randomly chosen part of neurons along
with their connections, i.e., in-going and out-going weights is adjusted in every
epoch. The rest of the network remains temporarily unchanged. We will say that
the neurons not chosen for training are temporarily frozen. Changing at once
only a part of the decision variables is applied in many optimization (and other
numerical) methods starting from the coordinate descent (Gauss-Seidel) strategy
or alternating direction method of multipliers [6,19]. However, these methods
are based on fixed partition of optimized variables. On the other hand, random
selection of neurons, when only one unit is updated at a time is performed
in asynchronous learning of the Hopfield network [13]. The approach proposed
here introduces an additional level of variability to the process of neural network
learning similarly as stochastic gradient does, enlarging exploration capability of
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the neuron weight space. Furthermore, this strategy allows neurons to be more
evenly exploited, since only some neurons, i.e., a randomly selected subspace
of weights will be updated in the actual epoch of training. As a consequence, it
will result in more evenly distributed network weights and better neural network
generalization possibility [2].

From this point of view, one can see some similarities between freezing ran-
domly chosen parts of the learned neural network that is proposed here and the
Dropout method [15]. Dropout is a random procedure in which only randomly
chosen neural network neurons (hidden units) are trained, whereas the rest of the
neural net neurons and their incoming and outcoming connections are temporar-
ily removed from the neural network during a small period time of training. Sto-
chastic gradient decent (SGD) training is lately often combined with the dropout
method [1,15,21]. It is known that dropout gives visible improvements on many
benchmark data sets for speech and image classification [1,8,21,24]. Dropout
is used for preventing a trained neural network from overfitting and it usually
improves the performance of SGD training of deep neural nets [5,8,14,20,23].

Although the freezing strategy can be applied not only to learn feed-forward
neural nets (FFNN), in this paper we restrict ourselves to FFNN architecture
with one hidden layer of sigmoid neurons and a linear output neuron, i.e., the
simplest structure which is known to be the universal approximator [7,16] and
SGD learning algorithm. Nevertheless, it should be noted, that the freezing strat-
egy can be used also with many other popular optimization based FFNN train-
ing methods, such as Levenberg-Marquardt, conjugate gradient methods, BFSG
[10,12], among many others.

This paper is structured as follows. The next section describes the structure
of our FFNN and the problems of training it in the context of overfitting in
nonlinear regression neural network models training. Section 3 presents details
of the learning strategy proposed here with randomly frozen neurons. Section 4
shows some simulation results which explain and confirm proposals and conclu-
sions developed in the previous sections. In Sect. 5 we summarize the provided
simulation results and indicate possible further developments.

2 Network Structure, Learning Optimal Weights
and the Problem of Overfitting

We assume that the neural network is a usually used FFNN with one or more
hidden layers. The output of the network is given by:

ynet(X) =
M∑

j=1

w
(0)
j φ

(0)
j (X), (1)

where X ∈ Rn (X = (x1, . . . , xn)T ) is an input vector, M is the number of
neurons in the hidden layer (the last hidden layer), and w

(0)
j is a weight joining

j-th neuron to the output of the network. For the network with exactly one
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hidden layer we have

φ
(0)
j (X) = fact

(
n∑

i=1

w
(−1)
ij xi + bj

)
, j = 1, . . . , M, (2)

where fact is an activation function. In general, for the network with K > 1
hidden layers,
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where φ
(0)
j (X) is an ouput of j-th neuron in the last hidden layer and consecu-

tively

φ
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where j = 1, . . . ,M (−k), k = 1, . . . ,K−1, M (−K) = n and φ
(−K)
i (X) = xi, i =

1, . . . , n and M (0) = M .
Usually the problem of neural network training is over-parameterized. It

means that the number of data points in the learning sequence (Xj , yj), j =
1, . . . , N , i.e., N is often smaller than the number of the neural network para-
meters.

From the theoretical point of view, if N ≤ M and matrix

χ =

⎡

⎢⎣
φ
(0)
1 (X1), φ

(0)
2 (X1), . . . , φ

(0)
M (X1)

· · · · · ·
φ
(0)
1 (XN ), φ

(0)
2 (XN ), . . . , φ

(0)
M (XN )

⎤

⎥⎦ (5)

is a matrix of a full rank (i.e., has a rank N), then there exist weights in the last
hidden layer W (0) = (w(0)

1 , . . . , w
(0)
M )T such that neural networks (1–3) interpo-

lates the learning sequence.
It is well known that the least mean square errors minimization leads in such

a case to the partial solution W (0) = (χTχ)−1χTY, where Y = (y1, y2, . . . , yN )T .
A similar approach is often used when training small RBF networks [12]. Also,
extreme learning machines [17] utilize such kinds of ideas. Unfortunately, matrix
χ is usually badly conditioned and may lead to significant numerical errors.
Although the rest of the neural network weights can be used for preconditioning,
the perfect solutions are also undesirable, since interpolating or almost interpo-
lating networks behave poorly on test data (other than training ones).

3 Description of the Algorithm

We will use for FFNN training the Stochastic Gradient Descent (SGD) algorithm
with mini-batches of the size MB and additional momentum term [12,21,22].
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Traditional SGD picks at random a small set of training examples (i.e., random
mini-batch) at each iteration and updates all network weights on the basis of
this set only. In random weight subspace optimization we will randomly select
(uniformly, but without repetitions) L neurons among all M neurons forming
the hidden layer. If the network contains more hidden layers the similar random
selection will be repeated on every hidden layer. The weights of all in-going
and out-going connections of the selected neurons will be updated. The rest of
the neural networks weights will be unchanged. We say that this part of the
networks is temporarily frozen. Here we assume that the same weight subspace
selection will be used during the whole epoch. Furthermore, we fix that each
epoch consists of N/MB iterations. As a consequence, every epoch consists of
the same number of learning example presentations, independently of mini-batch
size N .

Thus, in every epoch the set of neurons is randomly divided onto two comple-
mentary sets: neurons which remain frozen, i.e., are not updated in this epoch,
and the rest of the neural network neurons which will be trained in this epoch.
More precisely, only their in-going and out-going connections which are not con-
nected to the frozen neurons will be updated.

w(t + 1) := w(t) + Δw(t + 1) (6)

Δw(t + 1) := μΔw(t) − α ∇EMB/MB, (7)

where t is the number of iteration, and w(t) symbolizes weight of any non-
frozen network connection at time t. μ stands for the momentum coefficient and
α is the learning rate. ∇EMB denotes the stochastic gradient obtained with
respect to a randomly selected mini-batch of training samples. It is possible to
use momentum in two different ways - the global and the local. In the global
momentum regime only Δw(0) = 0. In the local momentum regime Δw is set to
zero at the beginning of each epoch. The last approach allows us to additionally
stabilize training.

It may be useful to start with a full neuron set training (without frozen
neurons), however it was not necessary in our experiments. It should be noted
that in general, stochastic gradient ∇EMB is computed for the whole network.
In contrary, the number of the weight updates is strongly reduced depending
only on L.

3.1 Learning Rate and Other Training Parameters

We have used a small constant learning rate α during all the training. We estab-
lished the learning rate value on the basis of experiments. Namely, we have used
the learning rate that gives stable convergence in the 10 initial epochs.

3.2 Some Comments About Dropout

The dropout method can be implemented in different ways (see [8,11,15,21,25])
and is usually used for classification (logistic regression). We have applied this
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method for comparison reasons during training FFNN for regression. It was
important to have similar circumstances when we are freezing some neurons
instead of dropping them out. Thus, we have chosen the dropout strategy without
any regularization, but accompanied by a larger momentum term, i.e., μ = 0.99
(according to indications given in [21]). To stabilize the training process we have
to reset the momentum term at the beginning of every epoch. Otherwise the
learning rate should be much smaller than that used by the freezing approach.
At test time one single neural network without dropout was used. The outgoing
weights of every neuron were scaled down according to the probability 1 − p,
where p is a probability that a given neuron will be temporarily removed from
the network. In our experiments p = 0.5.

4 Numerical Experiments Results

We have performed SGD training of neural networks with one hidden layer of
100 neurons as a model of the following regression problem.

Y = f(X1,X2) + ε = exp [−5X1 + 1] + 0.5 exp [−0.25(11X2 − 2)2] + ε, (8)

where X1,X2 ∈ [0, 1] are independent uniformly distributed random variables
and ε is a Gaussian white noise with variance σ2 = 0.01, i.e., ε ∼ N (0, 0.1). The
training sequence consists of 100 independent and identically distributed (i.i.d.)
data points. Similarly, the testing set contains also a hundred i.i.d. elements.

We have used stochastic gradient descent with 5 and 10 -sized mini-batches
and a traditional mean squared error as a criterion function. Furthermore, apart
from MSE for the learning and the testing set also a mean absolute error (MAE)
was also monitored. It is easy to check that if we know the true regression
function f(X1,X2), the expected value of MAE is

E{|Y − f(X1,X2)|} ≈ 0.799 (9)

and the expected value of MSE is 0.01.
Although it seems that regression model (8) is relatively easy to approximate

by a small size FFNN with one hidden layer, in our learning experiments we have
have used a neural network equipped with 100 neurons in its hidden layer.

The initial weights are taken uniformly from [0, 1] interval. All experiments
shown in Tables 1 and 2 were performed, starting from the same initial point. The
columns labeled by (DR 50) contain errors obtained for droput of 50 neurons.
Training all 100 neurons was performed without freezing. Monte Carlo errors
given in these Tables were computed on the basis of the 100000 random samples.
Tables 1 and 2 contain final errors obtained after 5000 epochs of training. The
training process details from the first 1000 epochs are depicted in Fig. 1.

The theoretical analysis and many experiments [3,4,9,20] indicate, that that
local minima are not a problem for larger size FFNN. Instead of local min-
ima, an extremely large number of saddle points where the gradient is zero is
observed. So, regardless of the initial weights, the neural network nearly always
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Table 1. Training and testing errors for mini-batch of size 5 after 5000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and constant learning rate
α = 0.05

Number of trained neurons 100 10 20 30 40 50 DR 50

Training errors

MAEtrain 0.093 0.091 0.091 0.083 0.088 0.091 0.108

MSEtrain 0.013 0.014 0.013 0.010 0.012 0.013 0.019

Testing errors

MAEtest 0.120 0.128 0.121 0.103 0.117 0.120 0.139

MSEtest 0.023 0.025 0.023 0.016 0.021 0.023 0.030

Monte Carlo errors

MAEMC 0.121 0.123 0.121 0.106 0.112 0.117 0.135

MSEMC 0.023 0.024 0.024 0.018 0.20 0.022 0.030

arrives at solutions of very similar quality, especially if the size of the network
is large. Thus, we have performed some additional experiments: for the full net-
work learned without freezing and for the network with L = 30, i.e., when 70
neurons from one hundred were frozen in every epoch. In all the cases the size
of mini-batch was equal to 5 and each experiment was repeated five times. The
averaged results of training after 5000 epochs are given in Table 3. One can see,
that the mean errors are very close to that presented in Table 1. According to
these facts we restrict further experiments to the one common starting point.
Tables 4 and 5 provide the training and testing errors after 10000 epochs of
training for mini-batches of size 5 and 10, respectively.

Table 2. Training and testing errors for mini-batch of size 10 after 5000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and the constant learning
rate α = 0.05

Number of trained neurons 100 10 20 30 40 50 DR 50

Training errors

MAEtrain 0.098 0.100 0.096 0.089 0.089 0.092 0.118

MSEtrain 0.014 0.015 0.014 0.013 0.012 0.013 0.023

Testing errors

MAEtest 0.123 0.127 0.122 0.113 0.117 0.120 0.149

MSEtest 0.024 0.026 0.025 0.021 0.022 0.023 0.035

Monte Carlo errors

MAEMC 0.118 0.127 0.117 0.107 0.113 0.117 0.146

MSEMC 0.028 0.026 0.022 0.018 0.021 0.022 0.036
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Table 3. Averaged training and testing errors for mini-batch of size 5 after 5000 epochs
of training with local momentum μ = 0.9 and the constant learning rate α = 0.05

Number of trained neurons MAE training MSE training MAE testing MSE testing

100 0.094 0.014 0.125 0.025

30 0.084 0.011 0.106 0.017

Table 4. Training and testing errors for mini-batch of size 5 after 10000 epochs of
training with local momentum μ = 0.9 and the constant learning rate α = 0.05

Number of trained neurons 100 10 30 DR 50

Training errors

MAEtrain 0.093 0.090 0.089 0.103

MSEtrain 0.013 0.012 0.012 0.017

Testing errors

MAEtest 0.121 0.121 0.114 0.134

MSEtest 0.023 0.024 0.020 0.027

Monte Carlo errors

MAEMC 0.116 0.115 0.107 0.131

MSEMC 0.022 0.022 0.019 0.028

Table 5. Training and testing errors for mini-batch of size 10 after 10000 epochs of
training with local momentum μ = 0.9 (0.99 for dropout) and the constant learning
rate α = 0.05

Number of trained neurons 100 10 50 DR 50

Training errors

MAEtrain 0.096 0.097 0.092 0.103

MSEtrain 0.013 0.015 0.013 0.018

Testing errors

MAEtest 0.121 0.127 0.120 0.136

MSEtest 0.023 0.026 0.023 0.029

Monte Carlo errors

MAEMC 0.116 0.127 0.115 0.128

MSEMC 0.022 0.026 0.021 0.027

It can be once more observed that SGD is a very slowly convergent method,
especially for regression problems. The best results we have obtained for L = 30
and a very long training time. It was MSElearn = 0.0084, MAElearn = 0.074 for
the learning sequence and MSEtest = 0.0107, MAEtest = 0.085 for testing. The
number of epochs was about 23500 for local momentum and 13500 for global
momentum. Validity of the solution was confirmed by Monte Carlo simulations
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Fig. 1. Results of first 1000 epochs of the training. Left panel: MSE for the learning set.
Right panel: MSE for the testing set. Blue – traditional FFNN, yellow – the network
with freezing L = 30, green – dropout for 50 neurons left. (Color figure online)

using 100000 random observations, namely MSEMC = 0.011 and MAEMC =
0.084. It was a slightly better result than that obtained for the testing set.

5 Discussion and Conclusions

In this paper we have presented a new neural network training strategy, when in
every epoch of training only a randomly chosen and structurally connected net-
work weights are updated. The learning algorithm temporarily keeps constant
the rest of the neuron weights. We say that these weights are frozen. We have
shown experimentally, that for SGD method of learning this approach can pro-
vide better and faster solutions than the classical strategy of the whole network
training. It occurred that the proposed method provides a very good generaliza-
tion and – in contrast to the dropout – it is much more stable and it does not
need a regularization.

We have decided to use a testing set of the same size as the learning set.
Both of them were relatively small, i.e., the number of samples N was equal
to the number of neurons in the hidden layer. This assumption allows us to
trustworthy control of the training process. Errors obtained by the Monte Carlo
method confirm credibility of the solutions.

It should be noted that in our example the smaller size mini-batches acceler-
ate the training. Furthermore, too large learning rates, even if they do not desta-
bilize the training process, result in larger finally obtainable values of MSEtrain

and MSEtest.
In our experiments (without any regularization) freezing gave better results

than the dropout method. Nevertheless, further comparisons are needed.
The performed experiments suggest that over-parametrized (with respect to

the number of data samples) FFNN models can be learned efficiently without
over-fitting symptoms. We claim that the random subspace selection is efficient,
although slow in combination with SGD, for large scale multivariate optimiza-
tion problem. From the stochastic optimization point of view it is important to
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provide a safe and trusty method of decreasing the learning rate during the opti-
mization process [18]. However some adaptive methods of changing the learning
rate have been known for decades [12], and still there is no satisfactory solution
from the point of view of SGD.

Furthermore, it should be noted, that the freezing strategy can be combined
not only with SGD type FFNN training algorithms, but also with other pop-
ular optimization based training methods, for example, Levenberg-Marquardt,
conjugate gradient, quasi-Newton methods and their modifications [10,12].
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