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a b s t r a c t

The dimensionality and the amount of data that needs to be processedwhen intensive data
streams are observed grows rapidly, together with the development of sensors arrays, CCD
and CMOS cameras and other devices. The aim of this paper is to analyze an approach to
dimensionality reduction as a first stage of the multi-layer feed-forward neural networks
with sigmoidal activation functions. The lower bound on dimension of the output of
dimensionality reduction layer is established. Tail bounds for inner products – similar to
the known Johnson–Lindenstrauss results, concerning squared distance preservation – are
given.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The idea presented in this paper is to add a new dimensionality reduction layer to neural networks with sigmoidal
activation functions. In contrast to multi-layer nets, in which all layers are nonlinear, the proposed layer is linear in input
variables. Furthermore, weights of this layer are chosen in a random way, instead of using a kind of learning process.
At first glance it can be surprising, but recent results on random projections (see the bibliography cited in Section 3)
provide us with tools for dimensionality reduction, which retain (with a prescribed accuracy and probability) not only
the Euclidean distances between pairs of projected points, but also the inner product. Using random projections as the
first layer (very similar to neuronal random projection [1,2]), we are able to reduce the dimensionality of input data,
deteriorating their metric relationships only slightly. This approach is closely related to machine learning theory [3], where
random projections are considered as a robust concept learning tool which can be employed to reduce the dimensionality of
examples, independent of the concept class[1]. Their approach is based on the observation that randomprojection preserves
approximately the distances between a pair of points (Johnson–Lindenstrauss lemma [4]).
The dimensionality reduction layer consists of inner products of input vectors andweight vectors — eachweight vector is

used to form a new coordinate value. Here we examine the properties of the dimensionality reduction layer in more depth,
sincewe have found out hownormal randomprojection preserves the inner product of vectors.More generally, the question
we consider in this paper is whether a neural network with sigmoidal activation functions and a dimensionality reduction
layer is able to approximate the corresponding neural network with the non-reduced input dimension.
Although the observation that the inner product is preserved (approximately) by random projections, is made by other

authors [5,6], in this paper we have shown the useful tail bounds for concentration of inner products around the mean (see
Lemma 1 in Section 4).
The paper is organized as follows. In the next section we formulate the main theorem, which establishes the lower

bound on the dimension of the output of the dimensionality reduction layer, assuming that the rest of the network structure
remains unchanged (i.e. the number of neurons in the hidden layer and the weights of the output layer) and the weights in
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the input layer are also projected, using the same projection as used in the dimensionality reduction layer for projecting the
input vector. This lower bound ensures that the outputs of both networks differs only slightly (by ε > 0) for n different input
vectors with probability 1− δ. The dimension after projection depends only on the number of input vectors, the number of
neurons in the hidden layer, the proscribed accuracy ε and the probability of failing δ the approximate equivalence of the
networks under consideration.
The proof of the dimensionality reduction theorem is based onproperties of normal randomprojections of inner products.

In Section 3 we provide basic facts concerning random projections, which are used for stating the result on the accuracy
of a random projection layer in comparison to nets without dimensionality reduction. Then, in Section 4, we present the
lemma formulating tail bounds for inner products similar to the Johnson–Lindenstrauss results concerning squared distance
preservation [7]. The proof of the lemma is given in the Appendix.

2. Properties of a neural network with sigmoidal activation functions and dimensionality reduction layer

We turn our attention to a very well-known neural network with sigmoidal activation functions [8,9].
Let

y(x) = v0 +
M∑
i=1

vif

(
d∑
j=1

wi(j)xj

)
, x ∈ X ⊂ Rd, (1)

be a feed-forwardneural networkwith sigmoidal activation function f : R→ [−1, 1]—nondecreasing, Lipschitz continuous
function, such that f (t)→ 1 if t →∞ and f (t)→ −1 if t → −∞. Furthermore, we assume that X is a compact set in Rd,
as a prerequisite to the universal approximation properties of sigmoidal neural networks [10,11].
Further, define the corresponding neural network with a dimensionality reduction layer as:

yS(x) = v0 +
M∑
i=1

vif

(
1
k

k∑
j=1

ŵi(j)x̂j

)
, x ∈ Rd (2)

where x̂j =
∑d
l=1 sjlxl (j = 1, . . . , k) and ŵi(j) =

∑d
l=1 sjlwi(l) (j = 1, . . . , k i = 1, . . . ,M) are a projection of vector

x ∈ Rd and wi ∈ Rd onto Rk using S ∈ Rk× d – a random matrix whose entries are samples from a normal random variable,
i.e., sij ∼ N(0, 1)which are independent and identically distributed (i.i.d.).
We prove the following theorem.

Theorem 1. Define R = CLmaxi |vi|‖wi‖maxx∈X ‖x‖, where CL > 0 is Lipschitz constant depending on an activation function f .
Choose ε ∈ (0, 1) and δ > 0. If the dimensionality after reduction k is selected in such a way that

k ≥
log 2+ logM + log n− log δ

c1ε2 − c2ε3
, (3)

where c1 = 1
4R2
and c2 = 1

6R3
, then the probability that

|y(x(i))− yS(x(i))| > ε, i = 1, . . . , n

is smaller than δ > 0, where x(i) ∈ X, i = 1, . . . , n, is a given set of n points.

Proof. Note, that using the union bound, for any x and for any ε > 0, we obtain

Pr{|y(x)− yS(x)| > ε} = Pr

{∣∣∣∣∣ M∑
i=1

vi

[
f

(
1
k

k∑
j=1

ŵi(j)x̂j

)
− f (wTi x)

]∣∣∣∣∣ > ε

}

≤ Pr

{
M∑
i=1

|vi|

∣∣∣∣∣f
(
1
k

k∑
j=1

ŵi(j)x̂j

)
− f (wTi x)

∣∣∣∣∣ > ε

}

≤

M∑
i=1

Pr

{
|vi|

∣∣∣∣∣f
(
1
k

k∑
j=1

ŵi(j)x̂j

)
− f (wTi x)

∣∣∣∣∣ > ε

}

≤ Mmax
i
Pr

{∣∣∣∣∣f
(
1
k

k∑
j=1

ŵi(j)x̂j

)
− f (wTi x)

∣∣∣∣∣ > ε

|vi|

}
.

Furthermore, we have assumed that f is Lipschitz continuous

|f (t + a)− f (t)| ≤ CL|a|, t, a ∈ R,
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where CL > 0 is the constant depending on f . Note, that for activation functions such as tanh or logistic function
(1− exp−t)/(1+ exp−t)we obtain CL = 1 and CL = 1/2, respectively.
Thus, we obtain∣∣∣∣∣f

(
1
k

k∑
j=1

ŵi(j)x̂j

)
− f (wTi x)

∣∣∣∣∣ ≤ CL
∣∣∣∣∣1k

k∑
j=1

ŵi(j)x̂j − wTi x

∣∣∣∣∣ .
Using Lemma 1 (see Section 14 for details and Appendix for the proof of the lemma) for vectors wi and x we can bound

the probability that the inner products before (wTi x) and after projection (
1
k

∑k
j=1 ŵi(j)x̂j) differ more than ε‖wi‖‖x‖, i.e.:

Pr

{∣∣∣∣∣1k
k∑
j=1

ŵi(j)

‖wi‖

x̂j
‖x‖
−

(
wi

‖wi‖

)T x
‖x‖

∣∣∣∣∣ > ε

}

= Pr

{∣∣∣∣∣1k
k∑
j=1

ŵi(j)x̂j − wTi x

∣∣∣∣∣ > ε‖wi‖‖x‖

}
≤ 2 exp−k

(
ε2

4
−
ε3

6

)
,

where ε ∈ (0, 1).
Let R = CLmaxi |vi|‖wi‖maxx∈X ‖x‖ and let ε = ε

R . Thus, we obtain the bound

Pr{|y(x)− yS(x)| > ε} ≤ 2M exp
[
−k

(
ε2

4R2
−
ε3

6R3

)]
. (4)

Selecting the admissible probability of error δ > 0, we can obtain the lower bound on k. Since there are n data points in
total, by the union bound inequality, it suffices if

nPr{|y(x)− yS(x)| > ε} ≤ δ.

Thus, we have

2nM exp
[
−k

(
ε2

4R2
−
ε3

6R3

)]
≤ δ

and consecutively

exp[log(2nM)] exp
[
−k

(
ε2

4R2
−
ε3

6R3

)]
≤ exp(log δ).

The last inequality holds if

log(2nM)− log(δ) ≤ k
(
ε2

4R2
−
ε3

6R3

)
,

which finishes the proof by setting c1 = 1
4R2
and c2 = 1

6R3
. •

Note that R depends onmaximal values of ‖x‖, ‖wi‖ and |vi|— indicating that scaling of the data used for neural network
learning is a very important task and may strongly influence the dimensionality reduction possibilities.

3. Linear random projections — a short review.

As a prerequisite for formulating and proving Lemma 1 we provide a review of results on random projections [12,1,13,
14,2,15].
In random projections, we can estimate the original pairwise Euclidean distances directly using the corresponding

Euclidean distances in a smaller dimension. Furthermore, the Johnson–Lindenstrauss lemma [4,16,7] provides the
performance guarantee.
Let ui ∈ Rd, i = 1, . . . , n be the original data. Let S ∈ Rk× d be a random matrix whose entries are i.i.d. samples of some

random variable. The projected data are

vi = Sui ∈ Rk, i = 1, . . . , n.

Note that form, l ∈ {1, . . . , n}we have

vmj − vlj =

d∑
i=1

sji(umi − uli), j = 1, 2, . . . , k.
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When sij ∼ N(0, 1) are i.i.d., then

vmj − vlj =

d∑
i=1

sji(umi − uli) ∼ N

(
0,

d∑
i=1

(umi − uli)2
)
,

and

Xj =
vmj − vlj(

d∑
i=1
(umi − uli)2

)1/2 ∼ N(0, 1). (5)

Denote by ‖.‖E(p) the Euclidean distance in p dimensions. Then, we can estimate

‖um − ul‖2E(d) =
d∑
i=1

(umi − uli)2

from the sample squared distances as follows:

D̂2 =
1
k

k∑
j=1

(vmj − vlj)
2
= ‖vl − vm‖

2
E(k), (6)

We omit displaying the dependence of D̂2 on m, l for the sake of brevity. Note that D̂2 is estimated using the elements of
projected vectors. Below, we provide results, which show to what extent distances between projected points are close to
distances of their counterparts in the original space.
It is easy to see that [7,2,13]:

E{D̂2} = D2. (7)

Thus, D̂2 is an unbiased estimator of ’’true’’ distance between points in the higher dimensional space, while its variance,
presented below, decreases to zero as k→∞

var(D̂2) =
2
k
D4. (8)

Similarly,

E(‖v‖2E(k)) = ‖u‖
2
E(d), var(‖v‖2E(k)) =

2
k
‖u‖4E(d)

for any u ∈ Rd and v = Su [2].
Furthermore, according to (5)

kD̂
D2
=

k∑
i=j

X2j ∼ χ
2
k ,

where
∑k
i=j X

2
j ∼ χ2k means that the sum has the chi-squared distribution with k degrees of freedom. Thus, using chi-

squared tail Chernoff bounds (see [7] for details) we can obtain the bound on the probability when the relative error exceeds
ε (1 > ε > 0)

Pr

{
|D̂2 − D2|
D2

≥ ε

}
≤ 2 exp

(
−
k
4
ε2 +

k
6
ε3
)
. (9)

Obviously, the similar inequality holds for the vector’s norms (a norm can be treated as a distance between given a vector
and [0, . . . , 0]T), i.e.,

Pr

{
|‖v‖2E(k) − ‖u‖

2
E(d)|

‖u‖2E(d)
≥ ε

}
≤ 2 exp

(
−
k
4
ε2 +

k
6
ε3
)
. (10)

In order to provide more explicit bounds, select the admissible probability of error δ > 0. Since there are n(n− 1)/2 <
n2/2 pairs in total among n data points, by the union bound inequality, it suffices if

n2

2
Pr
{
|D̂2 − D2| ≥ εD2

}
≤ δ.
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Using (9) we obtain

n2

2
2 exp

(
−
k
4
ε2 +

k
6
ε3
)
≤ δ

and consequently

k ≥
2 log n− log δ
ε2/4− ε3/6

= c(n, ε, δ)

provides the required upper bound for a probability of error.
It should be mentioned that one can also sample sij from other distributions with zero mean and unit variance (see [17,

14,6]).
The above inequalities are bounds for the probabilities of deviations between distances of pairs of points in the original

space and in the projection space, which has a reduced dimension.

4. Random projections of inner products

Now we are interested in the properties of inner product operation after random projection S:

vTl vm =

k∑
i=1

vlivmi

in comparison to the original value uTl um.
It is relatively easy to see [5,6] that

E(vlivmi) = uTl um, i = 1, . . . , k.

Let I(ul, um) = uTl um
and

Î(ul, um) =
1
k

k∑
i=1

vlivmi.

Thus,

E(Î(ul, um)) =
1
k

k∑
i=1

E(vlivmi) = uTl um. (11)

Furthermore [5,6],

var(vlivmi) = (uTl um)
2
+ ‖ul‖2‖um‖2, i = 1, . . . , k

and

var(Î(ul, um)) =
1
k
((uTl um)

2
+ ‖ul‖2‖um‖2). (12)

Using the Chebyshev inequality we can obtain

Pr

{
|Î(ul, um)− I(ul, um)|

‖ul‖‖um‖
≥ ε

}

= Pr

(∣∣ 1
kv
T
l vm − E

( 1
kv
T
l vm

)∣∣
‖ul‖‖um‖

≥ ε

)

= Pr


∣∣∣∣ k∑
i=1
vlivmi − (uTl um)

∣∣∣∣
‖ul‖‖um‖

≥ kε

 ≤
var

(
k∑
i=1
vlivmi

)
k2ε2‖ul‖2‖um‖2

=
k2 1k ((u

T
l um)

2
+ ‖ul‖2‖um‖2)

k2ε2‖ul‖2‖um‖2
≤
2
kε2

(13)

since uTl um ≤ ‖ul‖‖um‖.
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Denote by r the inner product of normed vectors xl = ul/‖ul‖ and xm = um/‖um‖, i.e.,

r = I(xl, xm) =
uTl um
‖ul‖‖um‖

.

Thus, we obtain a simpler form of inequality (13)

Pr
{
|Î(xl, xm)− r| ≥ ε

}
≤
2
kε2

(14)

Note, that (14) differs from inequality (9) (formulated for distances). We cannot evaluate |Î(xl, xm) − r|/r , because
r ∈ [−1, 1] and the factor 1/r2, which, in such a case, would appear in the right-hand side of inequality (14), can be very
large for r close to zero.
Furthermore, selecting the admissible probability of error δ > 0, and using the Bonferroni union bound inequality

n2

2
Pr
{
|Î(xl, xm)− r| ≥ ε

}
≤ δ.

we obtain the inequality

n2

kε2
≤ δ.

Thus, selecting k ≥ n2

δε2
, we get a crude lower bound for k.

The other possibility is to use the Chernoff bounds instead of the Chebyshev inequality for bounding the probability

P = Pr
{
|Î(xl, xm)− r| ≥ ε

}
.

Using the Chernoff bounds we are able to show the following lemma. The proof of the lemma is given in details in the
Appendix.

Lemma 1. If x̂m and x̂l are random normal linear projection of vectors xm ∈ Rd and xl ∈ Rd onto Rk then

Pr
{
|Î(xl, xm)− r| > ε

}
= Pr

{∣∣∣∣∣1k
k∑
j=1

ˆxm(j)
‖xm‖

ˆxl(j)
‖xl‖
−

(
xm
‖xm‖

)T xl
‖xl‖

∣∣∣∣∣ > ε

}
≤ 2 exp

[
−k

(
ε2

4
−
ε3

6

)]
,

where ε ∈ (0, 1).

5. Conclusions

We have shown that normal random projections preserve approximately, not only the squared Euclidean distance
between pairs of projected points, but also their inner products. The concentration of inner product property formulated
in Lemma 1 allows us to justify introducing the dimensionality reduction layer as a first layer in the feed-forward neural
network with the sigmoidal activation functions.
It seems that a similar approach could also be employed for radial basis function networks, but the large values of the

Lipschitz constant may lead to a very large lower bound for k.
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Appendix. Proof of Lemma 1

We use the Chernoff bounds for bounding the probability

P = Pr
{
|Î(xl, xm)− r| > ε

}
.

Let zl = vl/‖ul‖ = Sxl. The probability P = P+ + P−, where

P+ = Pr

{
k∑
i=1

zlizmi − rk > kε

}
,
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and

P− = Pr

{
k∑
i=1

zlizmi − rk < −kε

}
.

Using the Chernoff bound we obtain for any s that

P+ = Pr

{
exp

(
s
k∑
i=1

zlizmi − ks(r + ε)

]
> 1

}

≤ exp(−ks(r + ε))E

[
exp

(
s
k∑
i=1

zlizmi

)]
= exp[−ks(r + ε)]Π ki=1E[exp(szlizmi)]

and

P− = Pr

{
exp

[
−s

k∑
i=1

zlizmi + ks(r − ε)

]
> 1

}

≤ exp[ks(r − ε)]E

[
exp

(
−s

k∑
i=1

zlizmi

)]
= exp[ks(r − ε)]Π ki=1E[exp(−szlizmi)].

Random variables zli i zmi are correlated and for each i they have the same probability distribution which is a bivariate
normal with the mean [0, 0]T and the correlation matrix:[

1 r
r 1

]
.

Note, that for the sake of simplicity of the notation, the same symbol stands for random variables and for their values.
Define y1i =

√
2/2zli +

√
2/2zmi and y2i = −

√
2/2zli +

√
2/2zmi.

It is easy to see that y1i and y2i, (i = 1, . . . , k) are normal random variables, which are mutually independent. Thus,
y1i ∼ N[0, 1+ r] and y2i ∼ N[0, 1− r].
Hence, the moment generation function

E[exp(s zlizmi)]

is equal to

E[exp(s/2(y21i − y
2
2i)] = E[exp(s/2(y

2
1i)]E[exp(−s/2(y

2
2i)],

where y21i/(1+ r), y
2
2i/(1− r) ∼ χ

2
1 .

It is known that E(exp(sX)) =
√
1− 2s, if X ∼ χ21 , so

E[exp(s zlizmi)] = ((1− s(1+ r))(1+ s(1− r))−1/2, r ∈ [−1, 1].

Thus,

P+ ≤ [(1− s(1+ r))(1+ s(1− r)]−k/2 exp(−ks(r + ε)),

where −11−r ≤ s ≤
1
1+r and

P− ≤ exp(ks(r − ε))[(1+ s(1+ r))(1− s(1− r)]−k/2,

where −11+r ≤ s ≤
1
1−r .

We start with bounding P+. Assume that s = ε
2(1+εr) . Note, that−2/(1 + r) ≤ ε ≤ 2/(1 − r) hold for every ε ∈ (0, 1)

and r ∈ [−1, 1].

P+ ≤ exp
[
k
2

(
−2

ε

2(1+ εr)
(r + ε)− log

[
1−

ε

2(1+ εr)
(1+ r)

]
− log

[
1+

ε

2(1+ εr)
(1− r)

])]
= exp

[
k
2

(
−

ε

1+ rε
(r + ε)− log

[
1−

ε(1+ r)
2(1+ εr)

]
− log

[
1+

ε(1− r)
2(1+ εr)

])]
.

We have to show that function

f+(ε, r) = −
ε

1+ rε
(r + ε)− log

[
1−

ε(1+ r)
2(1+ εr)

]
− log

[
1+

ε(1− r)
2(1+ εr)

]
is negative for r ∈ [−1, 1] and ε ∈ (0, 1). Note, that f+(ε, r) is continuous for r ∈ [−1, 1] and ε ∈ (0, 1).
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If r = 1, then

f+(ε, 1) = −ε − log
[
1−

ε(1+ r)
2(1+ εr)

]
− log

[
1+

ε(1− r)
2(1+ εr)

]
= −ε − log

[
1−

ε

1+ ε

]
− log 1 = −ε − log

1
1+ ε

= −ε + log(1+ ε) ≤ −ε + ε − ε2/2+ ε3/3
= −ε2/2+ ε3/3 < 0,

provided that ε < 1.
Similarly, if r = −1, then

f+(ε,−1) = ε − log 1− log
[
1+

ε

(1− ε)

]
= ε + log(1− ε) ≤ ε − ε − ε2/2 < 0,

provided that ε < 1.
Furthermore, the derivative of f+(ε, r)with respect to r is the following

f ‘
+
(ε, r) =

ε2
(
2r + ε

((
r2 − 1

)
ε2 + 2rε + r2 + 3

))
(ε(r − 1)+ 2)(εr + 1)2(rε + ε + 2)

=
ε2[r2(3+ ε)+ 2r(1+ ε2)+ 3ε − ε3]
(ε(r − 1)+ 2)(εr + 1)2(εr + ε + 2)

=
ε2L+(ε, r)
M+(ε, r)

,

where L+(ε, r) and M+(ε, r) denote the corresponding part of numerator and the denominator, respectively. It is easy to
see thatM+(ε, r) > 0 for r ∈ [−1, 1] and ε ∈ (0, 1).
Furthermore, f ‘

+
(ε, r) = 0 for

r1(ε) =
−ε2 −

√
ε6 − ε4 − ε2 + 1− 1
ε3 + ε

< −1, ε ∈ (0, 1)

and

r2(ε) =
−ε2 +

√
ε6 − ε4 − ε2 + 1− 1
ε3 + ε

< 0,

where r2(ε) > −1, if ε < 1 and r2(ε)− > 0 if ε− > 0.
To the end, observe that L+(ε, r) < 0 (and consequently f ‘

+
(ε, r) < 0), if r ∈ [−1, r2(ε)], ε ∈ (0, 1). Similarly,

L+(ε, r) > 0, if r ∈ [r2(ε), 1], ε ∈ (0, 1). Summarizing, we have shown that f+(ε, r) < 0 if r ∈ [−1, 1], ε ∈ (0, 1).
As a consequence, we obtain that

P+ ≤ exp
[
−
k
4
ε2 +

k
6
ε3
]
.

For the second Chernoff bound let us assume that s = ε/(2−2εr). Consecutively, we obtain−2/(1+r) ≤ ε ≤ 2/(1−r),
which is true for any ε ∈ (0, 1) and r ∈ [−1, 1].
Thus,

P− ≤ exp
[
k
2

(
ε

1− εr
(r − ε)− log

[
1+

ε

2(1− εr)
(1+ r)

]
− log

[
1−

ε

2(1− εr)
(1− r)

])]
= exp

[
k
2

(
ε

1− rε
(r − ε)− log

[
1+

ε(1+ r)
2(1− εr)

]
− log

[
1−

ε(1− r)
2(1− εr)

])]
.

We have to show that function

f−(ε, r) =
ε

1− rε
(r − ε)− log

[
1+

ε(1+ r)
2(1− εr)

]
− log

[
1−

ε(1− r)
2(1− εr)

]
is negative for r ∈ [−1, 1] and ε ∈ (0, 1). Note, that f−(ε, r) is a continuous function for r ∈ [−1, 1] and ε ∈ (0, 1).
If r = 1, then

f−(ε, 1) = ε − log
[
1+

ε

1− ε

]
− log 1 = ε − log

1
1− ε

= ε + log(1− ε) ≤ ε − ε − ε2/2
= −ε2/2 < 0,
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provided that ε < 1.
Similarly, if r = −1, then

f−(ε,−1) = −ε − log 1− log
[
1−

ε

(1+ ε)

]
= −ε + log(1− ε)

≤ −ε + ε − ε2/2+ ε3/3 = −ε2/2+ ε3/3 < 0

provided that ε ∈ (0, 1).
Furthermore, the derivative of f−(ε, r)with respect to r is given by

f ‘
−
(ε, r) =

ε2
(
2r − ε

((
r2 − 1

)
ε2 − 2rε + r2 + 3

))
(ε(r − 1)− 2)(εr − 1)2(rε + ε − 2)

=
ε2[−r2(ε3 + ε)+ 2r(1+ ε2)− 3ε + ε3]
(εr + ε − 2)(εr − 1)2(εr − ε − 2)

=
ε2L−(ε, r)
M−(ε, r)

,

where L−(ε, r) and M−(ε, r) denote the corresponding part of numerator and the denominator, respectively. It is easy to
see thatM−(ε, r) > 0 for r ∈ [−1, 1] and ε ∈ (0, 1).
Additionally, f ‘

−
(ε, r) = 0 for

r1(ε) =
ε2 −
√
ε6 − ε4 − ε2 + 1+ 1

ε3 + ε
> 0, ε ∈ (0, 1)

and r1(ε) > 0. Note, that r2(ε) > 1.
To the end, L−(ε, r) < 0 (and f ‘−(ε, r) < 0), if r ∈ [−1, r1(ε)] and ε ∈ (0, 1). Similarly, L−(ε, r) > 0, if r ∈ [r1(ε), 1], ε ∈

(0, 1). Summarizing, we have shown, that

f−(ε, r) < 0 if r ∈ [−1, 1], ε ∈ (0, 1).

As a consequence, we obtain that also

P− ≤ exp
[
−
k
4
ε2 +

k
6
ε3
]
.

Adding bounds for P+ and P− we arrive at

P ≤ 2 exp
[
−
k
4
ε2 +

k
6
ε3,

]
which finishes the proof. •
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