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Abstract. In this paper we present some new results concerning classi-
fication in small sample and high dimensional case. We discuss geometric
properties of data structures in high dimensions. It is known that such
data form in high dimension an almost regular simplex, even if covariance
structure of data is not unity. We restrict our attention to two class dis-
crimination problems. It is assumed that observations from two classes
are distributed as multivariate normal with a common covariance ma-
trix. We develop consequences of our findings that in high dimensions N
Gaussian random points generate a sample covariance matrix estimate
which has similar properties as a covariance matrix of normal distribu-
tion obtained by random projection onto subspace of dimensionality N .
Namely, eigenvalues of both covariance matrices follow the same distri-
bution. We examine classification results obtained for minimum distance
classifiers with dimensionality reduction based on PC analysis of a sin-
gular sample covariance matrix and a reduction obtained using normal
random projections. Simulation studies are provided which confirm the
theoretical analysis.

Keywords: small sample, classification in high dimensions, eigenvalues
of a sample covariance matrix, maximum likelihood ratio, normal random
projection, minimum distance rule.

1 Introduction

Analysis of high-dimension low-sample size classification is one of most impor-
tant problems both from theoretical and practical point of view. It often happens
that the dimension d of data vectors is larger than the sample size N and this
case is referred to as small sample size, high dimensional data. Microarrays, med-
ical imaging, text recognition, finance and chemometrics are examples of such
classification problems. On the other hand we know that in practice, statistical
methods based on very small sample sizes might not be reliable. Many results in
this area have been obtained in the asymptotic setting, when both dimension d
of the vector observations and the size of the data sample N is very large, with
d possibly much larger than N [2], [19], [4]. It is assumed that d and N grow
at the same rate, i.e. d/N → γ as d → ∞ [19]. Others focus their attention on
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the case that dimension d increases while the sample size N is fixed [1], [8], [10],
[9]. In [13] and [8] it was observed that data in high dimensions form an almost
regular simplex and distances between N < d random points are very close to
c
√
(2d).
Here we restrict our attention to two class discrimination problems. It is as-

sumed that observations from two classes are distributed as multivariate normal
with a common covariance matrix. We assume that the number of available sam-
ples equals N and consists of independent vector observations from both classes,
N0 and N1, respectively.

Using the very popular Fisher classifier LDA (linear discrimination analysis)
[5], [21], [16], [19] when the data are from the normal distribution with a common
covariance matrix: Xl ∼ N(ml, Σ) for l = 0, 1, we can estimate a single, pooled
covariance matrix as an estimate of the common covariance matrix:

S =
1

N − 2

⎛

⎝
N0∑

j=1

(X0j − X̄0)(X0j − X̄0)
T +

N1∑

j=1

(X1j − X̄1)(X1j − X̄1)
T

⎞

⎠ ,

where

X̄0 =

N0∑

j=1

X0j , X̄1 =

N1∑

j=1

X1j ,

and N = N0 +N1.
The Fisher classification rule is based on

D(X) = (X −M)S−1(X̄0 − X̄1), (1)

where M = (X̄0 + X̄1)/2. If D(X) > 0 classify X to class C0 (labeled by 0),
otherwise classify X to class C1 (labeled by 1).

The maximum likelihood ratio (MLR) rule [11], [19] classifies X to the class
C0 if

N0 + 1

N0
(X − X̄0)

TS−1(X − X̄0) ≤ N1 + 1

N1
(X − X̄1)

TS−1(X − X̄1). (2)

The MLR rule can be also used when covariances in the both classes differ.
Firstly, one estimates the covariance matrix of each class, based on samples
known to belong to each class. Then, given a new sample X , one computes the
squared Mahalanobis distance [12] to each class, i.e.,

(X − X̄l)
TS−1

l (X − X̄l), l = 0, 1

and classifies the new point as belonging to that class for which the (weighted by
Nl+1
Nl ) Mahalanobis distance is minimal. It is well known [22] (and easy to show)

that the MLR rule coincides with the Fisher method when numbers of samples
from both classes are equal to each other, i.e., N0 = N1. Mahalanobis distance
is also closely related to Hotelling’s T-square distribution used for multivariate
statistical testing [15]. It is, however, hard to implement the covariance based
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classification methods when dimensionality is high due to the difficulty of esti-
mating the unknown covariance matrix. Even if number of samples N is greater
than the dimension of the data it is advisable to reduce dimensionality due to
some near zero eigenvalues of S. Thus, it is proposed to drop zero or near zero
eigenvalues of S.

If the number of data samples is smaller than the dimension of the data space,
the sample based estimate of the covariance matrix is singular with probability
one. Srivastava [19] has proposed a sample-squared distance between the two
groups, using the Moore–Penrose pseudoinverse of the singular sample covariance
matrix S.

The Moore–Penrose pseudoinverse of a matrix A is unique and is defined as
matrix A+ satisfying the following four properties:

– AA+A = A,
– A+AA+ = A+

– (AA+)T = AA+,
– (A+A)T = A+A

The sample covariance matrix S is a symmetric positive semidefinite matrix.
Thus, it can be written as

S = QDQT ,

where D is diagonal with the positive eigenvalues of S, and Q ∈ Rd×N is orthog-
onal and consists of N eigenvectors of S connected to the positive eigenvalues of
S. This orthogonal decomposition is often called principal components analysis
(PCA). The sample covariance matrix provides the conventional estimator of
principal component analysis (PCA) through the eigenvalue-eigenvector decom-
position. For the covariance or correlation matrix, the eigenvectors correspond
to principal components and the eigenvalues to the variance explained by the
principal components. The MoorePenrose inverse of S is defined by

S+ = QD−1QT ,

where d − N principal components directions connected to zero (or close to
zero) eigenvalues are removed. For numerical matrices computations of their
pseudoinverses are based on singular value decomposition (SVD) [7].

In this paper we will show why in many cases it is more effective to use unit
diagonal matrix I and the Euclidean distance instead of Mahalanobis distance
based on the pseudoinverse of the sample covariance matrix S+ in the context of
small sample and high dimension classification problems. The analysis is followed
by some simulation experiments which indicate that the same phenomena one
can observe also in a relatively small dimension in comparison to many practical
high dimensional problems. The most important condition is that the number
of samples is smaller than the dimension of the data.

The starting point of the paper is the observation that in high dimensions
N Gaussian random points generate a sample covariance matrix estimate which
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has similar properties as a covariance matrix of normal distribution obtained by
random projection onto subspace of dimensionality N . Namely, eigenvalues of
both covariance matrices follow the same distribution. This property explains
why PC analysis of singular sample covariance matrix (for N < d) leads to the
similar results as dimensionality reduction made at random.

The next section describes geometric properties of small sample data in high
dimensions. Section 3 is concentrated on properties of both mentioned earlier di-
mensionality reduction methods. Section 4. shows some simulation results which
explain and confirm proposals and conclusions developed in the previous sec-
tions. In Section 5 we summarize the provided theoretical and simulation results.

2 Geometric Structure of Data in High Dimensions

It is well known that high dimensional data concentrates close to the surface
of a hypersphere. For example, if samples are drawn according to multidimen-
sional normal distribution in a high-dimensional space, the center region where
the value of the density function is largest is empty and almost all samples are
located close to the sphere of radius

√
(Trace(Σ)) = c

√
(d) (for detailed as-

sumptions see [8] or [1], [6]). Figure 1 (left panel) illustrates this phenomenon,
where diagram of the ordered lengths of 100 iid random observations taken from
normal distribution Nd(0, I) of dimensionality d = 20000 is depicted. Further-
more, as is indicated in [8], [3], the data in high dimension form an almost regular
simplex. The distances between random points are very close to c

√
(2d). Figure

1, right panel depicts a diagram of the Euclidean distances between the same
set of 100 points. Mean Euclidean distance between these points (iid normal
Nd(0, 1), for d = 20000) equals 199.69 with standard deviation 0.78.
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Fig. 1. Left) Diagram of the length of 20000 dimensional random vectors generated
independently according to multivariate normal distribution (100 samples). Right) Di-
agram of the Euclidean distances between the same set of points.

This means that the variability of the small sample of high-dimensional data
is contained only in the random rotation of this simplex. For random vector
X being the multivariate Gaussian distribution with identity covariance matrix
I it is known that ||X ||2 has χ2 distribution with d degree of freedom and
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furthermore ||X || follows χ distribution with the same degree of freedom. The
mean of χ distribution is

√
(2)

Γ [(d+ 1)/2]

Γ [d/2]

and μ = E||X || → √
(d) as d → ∞ and its variance equals d− μ2.

In general the Euclidean norm of a multivariate normally distributed random
vector follows a noncentral χ distribution.

Ahn et al [1] have shown, using asymptotic properties of sample covariance
matrices, that the conditions for forming by a small data sample a regular sim-
plex are rather mild. More precisely, they have shown, that if eigenvalues of the
true covariance matrix Σ are all distinct and positive

λ1 > λ2 > . . . > λd > 0,

and if

∑d
i=1 λ

2
i

(
∑d

i=1 λi)2
→ 0 (3)

as d → ∞, then the nonzero eigenvalues of the sample covariance matrix behave

as if they are from diagonal matrix Trace(Σ)
N IN .

The similar phenomenon one can obtain for a uniform distribution. Figure
2 shows a diagram of the lengths of 20000 dimensional random vectors gener-
ated independently according to the uniform distribution from [0, 1]d cube (100
samples) and of the Euclidean distances between the same set of points. Mean
Euclidean distance between 100 points iid uniform from unit cube [0, 1]d, for
d = 20000 equals 57.74 with standard deviation 0.236. Mean vector‘s length
(averaged over 100 observations) equals 81.60 with standard deviation equal to
0.236.
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Fig. 2. Left) Diagram of the lengths of 20000 dimensional random vectors generated
independently according to the uniform distribution from [0, 1]d cube (100 samples).
Right) Diagram of the Euclidean distances between the same set of points.
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Fig. 3. Left) Diagram of the lengths of 20000 dimensional random vectors generated
independently according to the uniform distribution from [−1, 1]d cube (100 samples).
Right) Diagram of the Euclidean distances between the same set of points.

Further examples are given in Figures 3, 4 and 5.
Mean Euclidean distance between 100 points iid uniform unit cube [−1, 1]d,

for d = 20000 equals 115.49 with standard deviation 0.473. Mean vector’s length
(averaged over 100 observations) equals 81.64 with standard deviation equal to
0.236 (see Figure 3).
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Fig. 4. Diagram of the normalized lengths of 20000 dimensional random vectors gen-
erated independently according to the uniform distribution from [0, λ0.5

i ]d cube (100
samples). Right) Diagram of the Euclidean distances between the same set of points
with scaling factor 1/

√
(
∑

λ2
i /d) with λ2

i = i.

Mean vector‘s length (averaged over 100 observations) equals 8165 with stan-
dard deviation equal to 30.28. The adequate mean with rescaling factor

1/
√
(
∑

λ2
i /d) ≈ 100



616 E. Skubalska-Rafaj�lowicz

equals 81.65. Mean Euclidean distance between 100 points iid uniform from unit
cube [0, i0.5]d, for d = 20000 equals 57.73 with standard deviation 0.284 (see
Figure 4).
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Fig. 5. Left) Diagram of the lengths of 20 dimensional random vectors generated in-
dependently according to the uniform distribution from [−1, 1]d cube (10 samples).
Right) Diagram of the Euclidean distances between the same set of points.

Even if a dimension of data is relatively small, the random observations form
a rather regular structure. The mean Euclidean distance between 10 points iid
uniform from unit cube [−1, 1]d, for d = 20 equals 3.56 with standard deviation
0.447 (see Figure 5).

Regular, close to simplex structure of the data indicate that the sample covari-
ance estimate for small sample size N < d will be in most cases rather regular
with rather uniform nonzero eigenvalues and corresponding eigenvectors will
form random subspace of the original data space. This problem will be analyzed
in more detail in the next section.

3 Random Projections and Eigenvalues of a Sample
Covariance Matrix

As previously we consider Gaussian data with positive definite covariance matrix
Σ, i.e., such that its eigenvalues are all distinct and strictly positive

λ1 > λ2 > . . . > λd > 0.

Suppose we have a data matrix Y ∈ Rd×N , where N ≤ d. For the sake of
simplicity we will assume that the class means are known. Let’s say that m0 = 0
and m1 = μ. Thus, without loss of generality we can assume that each column
of Y is iid normal Nd(0, Σ), since every observation from the class labeled by 1,
let say X , is replaced by X − μ.

It is well known [7] that the nonzero eigenvalues of S = Y Y T /N are also the
eigenvalues of Y TY/N . Srivastava observed [19] that if columns of d×N matrix
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Y are independent identically distributed observations of normal random vector
∼ Nd(0, Σ) then the eigenvalues of Y TY have the same distribution as the
eigenvalues of

UTΣU,

where U ∈ Rd×N is a random matrix with entries iid N(0, 1) (see also [1]).
When number of samples N is smaller than a dimension of a data, then

randomly chosen vector observations Y and vector 0 span a random subspace of
the original data space of dimensionality N . If means are not given and should
be estimated from data N centered vectors span (with probability one) N − 1
dimensional space.

The same effect of choosing random subspace of the original space one can
obtain using normal random projections [20], [17], [18], [3].

Let Z ∈ Rd×N be a random matrix with entries iid N(0, 1). We can project
matrix of observations onto N dimensional subspace using transformation V =
ZTY .

Each column of matrix V ∈ RN×N is iid zero mean normal random vector with
covariance matrix ZTΣZ. A normal random projection with projection matrix
Z transforms Nd(0, Σ) distribution onto NN (0, ZTΣZ). Thus, instead of xTS+x
we can analyze a random quadratic form in normal variables NN (0, ZTΣZ):

(ZTx)T (ZTSZ)−1(ZTx). (4)

It is easy to show that matrix Z can be decomposed into Z = RQ̃, where

Q̃ ∈ St(d,N) = {A ∈ Rd×N : ATA = IN}

consists of N columns of rotation matrix obtained from Z by the Gram–Schmidt
orthogonalization process and R ∈ RN×N is an adequate scaling matrix. So, (4)
equals

xT Q̃(Q̃SQ̃T )−1Q̃Tx. (5)

This formula is very similar to the previous one, proposed by Srivastava [19],
i.e.,

xTQD−1QTx, (6)

where QTx follows the normal distribution with zero mean and the covariance
matrix QTΣQ, and where D is random with respect to the matrix of learning
samples Y .

The precise connections between (6) and (5) are still open question. However
it is known, that the mean value of

Q̃(Q̃SQ̃T )−1Q̃T

with respect to Q̃ (taken uniformly, i.e., according to the Haar measure on the
compact Stiefel manifold St(d,N)) is equal to a pseudoinverse of S [14]. It is
hard, for the numerical reasons, to apply this property in practice.
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Notice that eigenvalues of covariance matrix ZTΣZ of a normal distribution
NN (0, ZTΣZ) obtained after random normal projection have the same distri-
bution as nonzero eigenvalues of Y Y T . This property is not asymptotic and it
holds for every N < d.

In the next section we will show experimentally that using only one N di-
mensional projection at a time leads to the same mean classification error as
the method MLR proposed by Srivastava when results are averaged over many
different learning samples.

4 Numerical Results

We had performed the following experiment. A two class Gaussian problem was
examined with different numbers of learning samples in dimensions d = 20.
The classes differ in the mean, i.e., m0 = (0, . . . , 0)T and m1 = (1, . . . , 1)T .
Eigenvalues of the common covariance matrix equal 1, 2, . . . , 20. It is easy to
check that such covariance structure fulfills assumption (3). For simplicity, we
have also assumed that there are available N0 = N1 samples from both classes
N0 = N1 = 5, 8, 10, 20, 40, 100, 200. 100 different learning samples were
drawn and both methods were performed on 2× 10000 testing samples ( 10000
for each class). Class means are also estimated from the data.

Figure 6 demonstrates a comparison of averaged classification accuracy ob-
tained using different classification methods, namely: Srivastava modification of
the MLR rule and the MLR rule applied to randomly projected data (using nor-
mal random projections) onto subspaces of dimension k = 5, 10 and 20. When
the number of samples was greater than the dimension of the problem, the orig-
inal version of the MLR rule was used and a pseudoinverse was replaced by the
inverse of the sample covariance matrix estimate. For projection of dimensional-
ity k = 20 which is in fact nonsingular the eigenvalues of the sample covariance
matrix were almost the same. Small differences occur due to numerical errors.
For N0 = N1 = 5 one of the estimated covariance matrices has the following
nonzero eigenvalues:

{56.8024, 41.7466, 30.6846, 28.181, 15.2784, 12.4807, 5.73685, 3.17399}
and the trace of these covariance matrices equals ≈ 194.1. When the dimension
of a projection was lower than 20, the eigenvalues of the estimated covariance
matrix were more spread. For example, for k = 10 (and the same learning
sample) we have obtained the following set of nonzero eigenvalues:

{49.1553, 39.4426, 31.963, 13.7017, 9.29589, 3.33462, 1.41191, 0.115814}.
Using unity covariance matrix I instead of estimated ones, i.e., the minimum
Euclidean distance classification rule (MEDC), results in 0.61 − −0.0.74 mean
classification accuracy. The true covariance matrix allows to obtain accuracy
changing from 0.684425 ( means are estimated from only 5 samples) to 0.82 ( for
N0 = N1 = 200). These results indicate that for small data samples estimation
of the covariance matrix was useless.
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Fig. 6. Averaged classification accuracy for two 20-dimensional Gaussian classes and
different number of learning samples N = N0 +N1. N = 10, 16, 20, . . . , 400.

Figure 7 shows magnificated part of Figure 6, which contains results obtained
when number of samplesN was smaller than the dimension d. This figure demon-
strates that both dimension reduction methods give the same mean recognition
errors providing that the dimension of the random projection is larger than the
number of samples.
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Fig. 7. Averaged classification accuracy for two 20-dimensional Gaussian classes and
different number of learning samples N = N0 +N1. N = 10, 16, 20, 30, 40.

The similar behavior we have observed for d = 80 and N0 = N1 = 30. As
previously the class means were m0 = (0, . . . , 0)T and m1 = (1, . . . , 1)T and
eigenvalues of the common covariance matrix equal 1, 2, . . . , 80. The averaged
classification accuracy was equal to 0.579 for Srivastava’s method and equals
0.583 for random projection of dimensionality k = 60. Using I (unity) covariance
matrix, i.e. MEDC rule, allows us to obtain better results of classification with
accuracy 0.63.
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5 Conclusions

The work in this paper is focused on minimum distance classification in high
dimension in the small sample context.

We have presented a classification scheme based on random projections and
have compared its efficiency to the recognition results obtained for the MLR
type rule introduced by Srivastava [19]. Both approaches are outperformed by
the minimum Euclidean distance classifier, when N < d. It is clear that even if
the number of learning samples is larger than the dimension of the classification
problems, the minimum Euclidean distance rule can perform better than the
MLR (or Fisher discriminant method). It should be noted that both methods
apply principal component analysis. The Srivastava method uses it for dimen-
sionality reduction. The random projection method starts from reducing the di-
mension of the problem. It allows us to diminish computational costs for PCA.
If small values of principal components occur, it is possible to reduce further the
dimension of the data.

It is an open question how large should be the learning sample in high di-
mension taking into account the regular structure of data in high dimension. In
other words one may ask where is the transition point between spherical and
non-spherical structure of data when a covariance matrix is not unity.

Another important problem is how to test classification results in a low sample
size context. It is known that in such a case the cross validation methods are
very unstable [1]. We can definitely not avoid a randomness introduced by a
small sample size.
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