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I. Introduction 



Learning algorithms of the formal neuron 

NF(w,) 
 

xN 

w1 
x1 
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 

wN 

x2 

x(n) = [x1,...,xN]T -  input vector during the n-th learning step 

                                    (n = 1,2,3,4,..) 

s(n) (s(n) = 1 or  s[n] = 0) – teachers decision during  

                                             the n-th learning step 

(x(1), s(1)), (x(2), s(2)), (x(3), s(3)),… learning sequence {(x(n), s(n)} 

x(1), x(2), (x(3), ..... self - learning sequence {x(n)}   



Error correction algorithm (Perceptron) 

w(n) = [w1,.......,wN]T – the weight vector of the formal neuron NF(w,)  

                                     during  the n-th learning step (w(n)RN) 

 

(n) – the threshold of the formal neuron NF(w,) during the n-th step 

           ((n)R1) 

 

r(n) – output of the formal neuron NF(w,) during the n-th step                   

              (r(n) = 1 or r(n) = 0) 

                                             1  if  w(n)Tx(n)  (n)  

r(n) = r(w(n),(n);x(n)) = 

                                             0  if  w(n)Tx(n) < (n)   

If  r(n)  s(n) (error), then the correction of the weight vector 

w(n) and the threshold (n) follows. 



Error correction algorithm (Perceptron) 

 
 

               w(n) + x(n)     if   r(n) = 0 and s(n) = 1  

w(n +1) = w(n)                if    r(n) = s(n)  

                 w(n) - x(n)      if   r(n) = 1 and s(n) = 0  
 

                (n) - 1            if    r(n) = 0 and s(n) = 1  

(n +1) = (n)                 if    r(n) = s(n)  

                (n) + 1           if    r(n) = 1 and s(n) = 0 

or  

                 w(n) + x(n)    if   w(n)Tx(n) < (n) and  s(n) = 1  

w(n +1) = w(n)               if   r(n) = s(n)  

                 w(n) - x(n)     if   w(n)Tx(n)  (n) and s(n) = 0  
 

                (n) - 1           if   w(n)Tx(n) < (n) and s(n) = 1  

(n +1) = (n)                if   r(n) = s(n)  

                (n) + 1          if   w(n)Tx(n)  (n) and s(n) = 0                



Feature vectors xj[n]  
(Terminology of pattern recognition) 

 

xj[n] = [xj1,......., xjn]
T   

where xji  R1, or xiji {0,1}, j = 1,…, m, i = 1,…,n.   

The n-dimensional feature vector xj[n] (xj[n]  F[n]) represents the j-th 

object (patient) Oj from a given database in the feature space F[n]. 

The component xji of the vector xj[n] is the numerical value of  

the i-th feature (measurement, diagnostic test) of  the object Oj.  

 
 

Learning sets G+ and G- 

 

The learning set G+ contains  m+ positive precedents (examples) xj[n]  

The learning set G- contains  m- negative precedents (examples) xj[n] 
 

If the number n of features xi is greater than the number m = m+ + m- of 

feature vectors xj[n], then each xj[n] can be called ʺa long vectorʺ. For 

example, genetic data sets are usually built from long vectors xj[n]. 



II. Linear separability of the learning sets 



m+= 8 

m-= 6 

G+ 

G- H(w,) = {x: wTx = } 

Linearly separable learning sets G+
 and G-  

 
The concept of linear separabilty of multidimensional data 

sets is linked to the origins of methods of neural networks and 

pattern recognition (Perceptron theory) 

 If the learning sets G+ and G- are linearly separable, then 

the error correction algorithm converges in a finite 

number of steps.   
 



Linearly separable learning sets G+
 and G-  

 

Data set G+ can be exactly separated from the set G- by  some 

hyperplane H(w,) = {x: wTx = }:   
 

                                                                (w, )  (xj  G+)    wTxj  -   0  

                                                and   (xj  G-)    wTxj  -   0,    or  
 

                                        (w, )  (xj  G+)    wTxj -     1   

                                             and   (xj  G-)    wTxj -   -1 
 w[n] = [x1,..., xn]

T is the weight vector,  is the threshold (  R1) 

  = 1/ ||w|| is the positive marigin        

G- 

G+ 

x1 

x2 

0 

w 

 

 

REMARK:  

If the number n of features xi 

is greater than the number m  

of elements xj, then the sets 

G+ and G- are usually 

linearly separable. 



Linearly separable data sets G+
 and G-  

 

Data set G+ can be exactly separated from the set G- by the hyperplane 

H(w,) = {x: wTx = } if the parameters w and  fulfill the below 

inequlities:   
 

                       (xj  G+)    wTxj -    1  (*) 

              and   (xj  G-)    wTxj -   -1 
  

w = [x1,..., xN]T is the weight vector,  is the threshold (  R1)  

R – the solution region of the linear inequalities (*) 

 

R =  {(w, ):  (xj  G+)   (xj)Tw -    1                                R 

             and    (xj  G-)   (xj)Tw -   -1} 

 

The solution region R is nonempty if and only if the learning sets G+ and 

G- are linearly separable. The nonempty set R is a convex polyhedron in 

the parameter space. 

  

w1 

w2 

x1 

X2 

x3 



 

Linear separability of the learning sets G+
 and G- 

 

                                                              (w, )  (xj  G+)   wTxj    

                                        and   (xj  G-)    wTxj    

•Theorem: It the learning sets G+
 and G- are linearly separable, 

and the matrix A is nonsingular (A-1 exists), then the sets            

R+ = {rj : rj = A xj+ b and xj  G+} and  R- =  {rj :  rj = A xj+ b 

and xj  G-} are also linearly separable. 
 

Proof: 

I.  rj = A xj, where A-1 exists 

if  v = (A-1)Tw, then  vTrj
  = ((A-1)Tw)T(A xj) = wT(A-1A)xj = 

wTxj 
 

II. rj = A xj + b, where A-1 exists 

 if  v = (A-1)Tw, then  (v)Trj
  = ((A-1)Tw)T(A xj + b) =                              

=  wT(A-1A)xj + wT(A-1A)b = wTxj + , where  = wTb  

  



Linear separability of the learning sets G+ and G- 
 

TASKS: 

1. Detect linear separability of the learning sets G+ and G- in the space F[n]  

2. Find a separating hyperplane H(w*,*) in a given feature space F[n]  

3. Find a good feature subspace F*[nk]F[n] (feature subset selection) 
 

METHODS: 
A. Discriminant analysis based on the Fishers  criterion function 
 

                   w* = -1(+ - -), where  is the covariance matrix 
 

B. Singular Value Decomposition (SVD) 
 

C. Support Vector Machines (SVM)  
- quadratic programming is used for finding the minimum of the SVM criterion function. 

- SVM is the most popular and successful method in bioinformatics 
 

D. Convex and piecewise linear (CPL) criterion functions  

- the basis exchange algorithms (linear programming) allow to find efficiently the 

minimum of the CPL criterion function  

- perceptron criterion  function belongs to the CPL family 

 



Example: Each of the two features x1 and x2 individually has a very 

low discriminative power. But, the discriminative power of the set 

{x1, x2} of the two features is very high. 



The beginnings of  neural networks 
 

1943  McCulloch and Pitts introduce a model for the neuron 

          (formal neuron)       

1949  Hebb postulates Learning-Paradigm   

          (reinforcement only for active neurons) 

1958  Rosenblatt develops the perceptron model 

           (single-layer perceptron) 

1962 Rosenblatt proves the Perceptron-Convergence-Theorem 

          (error correction algorithm) 

1969 Minsky & Papert publish a book regarding the limits of  

         perceptrons (XOR problem) 

1986  Rumelhart & McClelland present the Multilayer    

          Perceptron (back propagation alghorithm) 



Frank Rosenblatt 

Principles of Neurodynamics: Perceptrons and the  

Theory of Brain Mechanisms, 

Spartan Books, Washington, 1962 

aa aa 



Marvin Minsky and Seymour Papert   

Perceptrons. Cambridge, MA: MIT Press, 1969 



III. Perceptron criterion functions 

 



Perceptron penalty functions 
(convex and piecewise linear functions – CPL) 

 
j

-
(w,) 

  

wTxj -  

 
0 -1 

j
+
(w,) 

     

wTxj -  

0 1 

(xjG+) (xjG-) 



Perceptron penalty functions 

 j
+(w,) and j

-(w,) 

•   (xj G+) 

                           1 +  - wTxj       if   wTxj -  < 1        

  j
+(w,)  =                                                                                                  

                                    0              if   wTxj -   1  

and (xjG-)  

                            1 -   + wTxj    if  wTxj -  > -1  

  j
-(w,) =                                                                                                  

                                    0              if  wTxj -    -1                      



Perceptron criterion function p( w,)   

•   

p(w,)  =   j j
+(w,) +    j j

-(w,)                 
 x

j
G+                             x

j
G- 

where the nonnegative parameters j determine relative 
importance (prices) of particular feature vectors (patients) 
xj.  

 

 Standard prices:    j = 1/(2m+)  for  xj  G+,  

                                j = 1/(2m-)   for  xj  G-, 

 

where m+ is the number of elements xj in the set G+,                         

     and m- is the number of elements xj in the set G- 

        

p(w,) is the convex and piecewise linear (CPL) function.                

 



The minimal value p
* of the  

perceptron criterion function p(w,)  
. 

p
* = p(w*,*) =  min p(w,)  

               w,  
 

 

 

 

 

 

 

 

 

 

 



p
*
 

p(w,) 

0 w
T
x -  (w

*
)

T
x - 

* 



Perceptron criterion function (w,) 

  

 

 

 

 

 

Minimisation task: 

 

                     * = (w*,*) = min (w,)          

                                                                             w, 

The basis exchange algorithms, which are similar to 

the linear programming, allow to find in an efficient 

manner the optimal parameters  (w*,*) and the 

minimal value  * of the criterion function (w,), 

even in the case of large, multidimensional data sets 

G+ and G-.  
L. Bobrowski and W.Niemiro, "A method of synthesis of 

linear discriminant function in the case of  nonseparabilty".  

Pattern Recognition 17,  pp.205-210,1984. 



BASIS EXCHANGE ALGORITHMS 

(Gaus – Jordan transformation) 
  

 

 

 

 

   Hyperplanes hj
+ and hj

- in the (dual) parameter space: 

         ( xj  G+ )   hj
+ = {w: xj

Tw =  1} 

         ( xj  G- )   hj
- = {w: xj

Tw = -1} 

w1 

w2 

w1 

w2 

W3
* 

(jJk
+)  xj

Twk  =  1 

(jJk
-)  xj

Twk =  -1 

Wk  – is the k-th vertex  

 (k = 1,.......,k0) 

Bk wk  = 1 or  wk = Bk
-11 

Bk  – is the k-th basis  

(Bk – nonsingular nxn matrix ) 

Equivalent matrix form: 



The minimal value p
*as the measure of 

nonseparability of the leaarning sets G+
 and G-  

•Remark 1 (detection of linear separabilty): The minimal value p
* of the 

standardized criterion function p(w,) is contained in the interval [0,1]  

0 p
*  1 

 p
* = 0 if and only if the learning sets G+

 and G- are linearly separable.  

•Remark 2 (the positive monotonocity property):  Neglecting of arbitrary 

feature vector xj from the  learning sets can not increase the value of p
* 

(the value p
* usually decreases)   

•Remark 3 (the negative monotonocity property): Neglecting of arbitrary 

feature xi from vectors xj belonging to set G+
 or G- can not decrease the 

value of p
* (the value p

* usually increases) 

•Remark 4 (the invariancy property): The minimal value p
* of the 

perceptron criterion function p(w,) does not depend on linear, 

nonsingular transformations of feature vectors xj : 

if (xj G+ G-)  yj = A xj, where A-1 exists, then y
* = x

* 



Lemma: (the invariancy property): The minimal value * of the 

perceptron criterion function (w,) does not depend on affine, 

nonsingular transformations of feature vectors xj : 
 

if (xj G+ G-)  yj = A xj+ b,  where A-1 exists, then y
* = x

* 

 

Proof: 

if  yj = A xj  and w = (A-1)Tw,  then 

  (w)Tyj
  = ((A-1)Tw)T(A xj) = wT(A-1A)xj = wTxj 

 

if  yj = xj + b and w = w, and   =  - wTb,  then 

 (w)Tyj
 +  = wT(xj + b) +  = wTxj + wTb +  - wTb = wTxj +   

 

if  yj = A xj + b, and w = (A-1)Tw, and   =  - (w)Tb,  then 

       (w)Tyj
 +  = ((A-1)Tw)T(Axj + b) +  - ((A-1)Tw)Tb =  

                          = (w)Txj
 +  



IV. Relaxed  linear separability (RLS) 

method of feature subset selection   

 



      Modified CPL criterion function Yl(w,) with  

      feature costs   
  

 Yl(w,) =  p(w,) + l  gi fi(w) =                
                                            iI               

                           =  p(w,) + l  gi|wi|  
                                                                                          iI 

where p(w,) is the perceptron criterion function, fi(w) 
are additional penalty functions (i = 1,……,n), gi  are the 
costs of particular features xi  (gi   0),  

l (l  0) is the cost level (l  0), and I = {1,……,n} .   

   



 Additional penalty functions fi(w) reflecting 

feature xi costs  

  
 

                                        

 

 

 

 

 

 

fi(w) 

 

w
T
ei  



                                 - (ei)
T w             if          (ei)

T w  <  0 

     fi(w)  = |wi|   =                           

                                   (ei)
T w             if          (ei)

T w    0 

 

where ei = [0,...,0,1,0,...,0]T are the unit vectors (i = 1,...,n) 

 

 

 Additional penalty functions fi(w) reflecting 

feature xi costs  

  



      Modified criterion function Yl(w,) with  

      feature costs  

Yl(w,) =  (w,) + l  gi fi(w) =  
                                                         iI                                                           

=(w, ) + l  gi|wi|                                                    
                                                   iI                                                                      

The regularization component l  gi|wi | used in the modified criterion 

function Yl(w) is similar to that used in the Lasso method developed in 

the framework of the regression analysis for the purpose of model 

selection. The main difference between the Lasso and the RLS methods is 

in the types of the basic criterion functions. The basic criterion function 

used in the Lasso method is the residual least squared type. The 

perceptron criterion function (w,) is the basic function  used in the RLS 

method. This difference affects, inter alia, the computational techniques 

used to minimize of the criterion functions. The criterion function Yl(w,) 

similarly to the function (w,) is convex and piecewise-linear (CPL).  



The RLS method is aimed at reduction of the maximum number 

of redundant features xi under the condition that the linear 

separability of the learning sets G+
 and G- is sufficiently 

preserved. This method is based on reapeated minimization of 

the modified criterion function Yl(w,).  

  
Bobrowski L. and Łukaszuk T.: Relaxed linear separability (RLS) approach to feature 

(gene) subset selection, Selected Works in Bioinformatics, Xuhua Xia (Ed.), INTECH 

2011, pp.103-118. 

 

Bobrowski L., Łukaszuk T: Feature selection based on relaxed  linear separability, 

Biocybernetics and Biomedcal Engineering 2009 (Volume 29, Number 2, pp. 43-59) 

Relaxed Linear Separability (RLS) 

 method of feature subsets selection 



FEATURE SELECTION BASED ON  

RELAXED LINEAR SEPARABILITY 

G- 

x2 

x1 

Wl
* 

  Yp(v
*) = 0 

G+ 

x3 x5 

x4 x6 

G- 
G- G+ 

Wl
* 

Wl
* 

We are searching for such minimal feature subset which assures  

sufficiently high degree of linear separability of learning sets G+ and G- 

The maximal number of unecessary features xi should be removed from 

data sets. The remaining features may indicate for the differential 

pattern (differential feature subset) of a given disease.   

Feature reduction (l     ) 



FEATURE SELECTION BASED ON  

RELAXED LINEAR SEPARABILITY 

G- 

x2 

x1 

Wl
* 

  Yp(v
*) = 0 

G+ 

x3 x5 

x4 x6 

G- 
G- G+ 

Wl
* 

Wl
* 

Successive increase of the parameter l value in the criterion function 

Yl(w,) allows to generate the descended sequence of feature subspaces 

Fk[nk]: 
 

F[n]  F1[n1] …  Fk[nk]                                       
where nk    nk+1. 

The sequence of the feature subspaces Fk[nk] is generated in a deterministic 

manner in accordance with the relaxed linear separability method. The 

feature subspace Fk[nk] is determined by the stop criterion. 

    

Feature reduction (l     ) 



EATURE SELECTION BASED ON RELAXED 

LINEAR SEPARABILITY  

Example: Four dimensional feature space (n = 4)      

                             {x1, x2, x3, x4} 

 

        {x1, x2, x3} {x1, x2, x4} {x1, x3, x4} {x2, x3, x4} 

 

                     {x1, x2} {x1, x4} {x2, x4} 

                    

                                             {x2}     {x4} 
Remark:The number of feature subsets grows rapidly as 2n -1 with the 

dimensionality n of feature space.  



 The Breast cancer data set (van’t Veer et al., 2002) describes the 

patients tested for the presence of breast cancer. The data contains 97 

patient samples, 46 of which are from patients who had developed 

distance metastases within 5 years, the rest 51 samples are from patients 

who remained healthy. 

The number of genes in this data set is equal to 24481. 

 

van’t Veer, L. J., et al. (2002). Gene expression profiling predicts clinical 

outcome of breast cancer, Nature, 415(6871), pp. 530–536 

 

Example 1: Results of the RLS feature selection   



 The  apparent error (AE) and the cross-validation error (CVE) in different 

feature subspaces Fk[nk] of the Breast cancer data set. 
Bobrowski L. ,Łukaszuk T.  (2011) Relaxed Linear Separability (RLS) Approach to  

Feature (Gene) Subset Selection, in: Bioinformatics, INTECH 

  

Example 1: Results of the RLS feature selection   



• High efficiency of the CPL procedures allows, among others, to use 

the RLS method for selection of optimal gene subsets which are 

characterized by a high discriminative power. For example, the RLS 

method were applied to the Breast Cancer data set which contains 

descriptions of 46 cancer and 51 non-cancer patients. Each patient 

was characterized in this set by n = 24481 genes. The RLS method 

allowed to select the optimal subset of n1 = 12 genes and such linear 

combination of these genes (linear key), which allows to correctly 

distinguish cancer from non-cancer patients in this set – with 100% 

accuracy. 

•  This example demonstrates the ability to use data mining based on 

the CPL criterion functions also when the number of features n is 

very high and many times greater than the number of objects m.  

• Bobrowski L. and Łukaszuk T.: Relaxed linear separability (RLS) approach to 

feature (gene) subset selection, Selected Works in Bioinformatics, Xuhua Xia 

(Ed.), INTECH 2011, pp.103-118. 

 

EXAMPLE 1: FEATURE SUBSET SELECTION BASED ON THE  

RELAXED LINEAR SEPARABILITY (RLS) METHOD 

 



      Modified CPL criterion function Yl(w,) with  

   equal feature costs   
  

Yl(w,) =  p(w,) + l  fi(w) =                
                                   i{1,…,n}             

                           =  p(w,) + l  |wi|  
                                                                               i{1,…,n}  

where p(w,) is the perceptron criterion function, and 

l (l  0) is the cost level (l  0).  

 The CPL optimal weight vector wl
 =[wl1

,…,wln
*]T: 



((w,))Yl(w,)Yl(wl
,l

)




The CPL optimal weight vector wl
 = [wl1

,…,wlN
*]T 

 in the case of linearly separable  

learning sets G+ and G- 


                  |wli
| = {min ( |wi|): w  R} 

                     i{1,…,N}                i{1,…,N} 

Remark: The CPL optimal vertex vk
* = [-k

*, wk
*]T  of 

the set R is characterised by the lowest L1 length of the 

weight vector wk
*. 



The SVM optimal weight vector wSVM
 = 

[w1
,…,wn

*]T 

in the case of linearly separable  

learning sets G+ and G- 


                 (wSVM
)TwSVM

 = {min (wTw): w  R}

Remark: The SVM optimal vector wSVM
* is 

characterized by the lowest Euclidean L2 norm, in 

contrast to the L1 norm used in the CPL solution wCPL
. 

 



CPL crtiterion function approach versus  

Support Vector Machines (SVM) in data mining   

 
1. The history of the CPL approach could be dated back to the 

beginning of the neural networks theory (perceptron criterion 
function). 

2. SVM method is based on the quadratic programming and the CPL 
method  - on the linear programming.  We develop basis exchange 
algorithms which are similar to the linear programming.  These 
algorithms allow to find the minimum of  single CPL criterion 
functions efficiently,  even in case of large, multidimensional data 
sets.    

3. The CPL method  can be also used to design a variety of data mining 
tools, such as hierarchical neural networks, ranked regression 
models, prognostic models with censored data, multivariate decision 
trees or visualising transformations.     

4. CPL approach allows to integrate the designing data mining tools 
with the feature selection process.   





 

V. Interval regression models  



Linear prognostic models 
 

            T(x[n])  = w[n]Tx[n] + w0 =                      (1) 

                         =  w1x1+….+ wnxn + w0  = 

                         = v[n+1]Ty[n+1] 
 

T(x[n])  - the prognostic model of an unknown survival 

time T of the patient O represented by the feature  

vector  x[n] = [x1,…,xn]
T, where w[n] = [w1,…,wn]

T is  

the weight vector (w[n]Rn), w0 is the threshold (w0 R),   
 

y[n+1]  = [1, x[n]T]T is the augmented feature vector,  

v[n+1] = [-w0, w[n]T]T is the augmented weight vector. 
 

The parameters w[n] and  of the model (1) are 
estimated on the basis of a given data set C. 

 

 
    



Learning data set in classical regression  
 

In the classical regression additional knowledge about feature vectors 

xj[n] is provided by the accompanying values tj of the dependent variable 

T, where tj  R1. The learning sets Cm have the below form: 

  

Cm = {xj[n], tj}        (j{1,…..,m})                                                 (2) 

 

The parameters w[n] and  can be estimated through minimization of the 

mean squared error (MSE) or the mean absolute error (MAE)  

 

MSE(w[n], w0) =  (T(xj[n]) - tj)2 =  (w[n]Txj[n] + w0 - tj)2  min 
                                          j = 1,…,m                        j = 1,…,m 

  

 

MAE(w[n], w0) =  |T(xj[n]) - tj| =  |w[n]Txj[n] + w0 - tj|  min           
                                         j = 1,…,m                        j = 1,…,m 

  

 



Least squares estimation in classical regression  
 

In the classical regression additional knowledge about feature vectors 

yj[n+1] = [1,xj[n]T]T is provided by the accompanying values tj of the 

dependent variable T, where tj  R1. The learning sets Cm have the below 

form: 

  

Cm = {yj[n+1], tj}        (j{1,…..,m})                                                  

 

The optimal parameters v*[n+1] = [- *, w*[n]T]T of the model 

T(y[n+1]) = v[n+1]Ty[n+1] are often estimated through minimization of 

the mean squared error (MSE):  

 

MSE(v[n+1]) =  (v[n+1]Tyj[n+1] - tj)2 =  min 
                            j = 1,…,m      

 

      v*[n+1] = (YT Y)-1 Y T t  

 

where t = [t1,…, tm]T and YT = [y1[n+1] ,…,ym[n+1]].  
 

 



Learning data set in the interval regression  
 

In the case of the interval regression additional knowledge about feature 

vectors xj[n] is given in the form of  intervals [tj
-, tj

+]: 

  

   Cm = {xj[n], [tj
-, tj

+]}      (j{1,…..,m} tj
- <  tj

+)                         (3) 

 

The parameters w[n] and w0 of the interval regression model (1) can be 

estimated through the postulated inequalites:  

 

(j{1,…,m})           tj
- < T(xj[n]) < tj

+                           (4) 

or 

        (j{1,….,m})    tj
- < w[n]Txj[n] + w0 < tj

+                      (5) 

 

The interval regression model can also be estimated on the basis of the 

classical learning set Cm (2) by using a small positive margin  (  0): 
 

      ( j{1,…..,m})    tt -  < w[n]Txj[n] + w0 <  tj +          (6) 



Estimation of interval regression parameters  

 
(j{1,…., m})        tj

-    w[n]Txj[n] + w0    tj
+                 (9) 

                            or    tj
-   w[n+1]Tx[n+1]   tj

+ 

 
Problem: How to estimate the parameters w[n+1] = [w[n]T, w0]

T on the        

                basis of the learning set Cm = {xj[n], [tj
-, tj

+]} (3)?  

 

1.  Method of the Expectation Maximization (EM)  

 

2.   Method based on the linear separability  exploration through the 

minimization of the convex and piecewise linear (CPL) criterion 

function   



The censored survival times Tj  

The censored survival times Tj can be represented by intervals [tj
-, tj

+] 

and by the indicators of censoring j of (j {-1, 0, 1}): 

 

  if  j= 0    then  Tj  [tj
-, tj

+]     (tj
-  Tj   tj

+)                                      (10) 

  if  j= -1   then  Tj  (-, tj
+]          (Tj   tj

+)  - left censoring               

  if  j=  1   then  Tj  [tj
-, +)          (tj

-  Tj )  - right censoring               

 

The rules (10) allow to introduce the below set of the postulated linear 

inequalities: 

 

(j{1,…., m}) 

  if  j = 0   then   tj
-   w[n]Txj[n] + w0   tj

+                                        (11) 

  if  j= -1   then          w[n]Txj[n] + w0   tj
+  - left censoring               

  if  j=  1   then   tj
-   w[n]Txj[n] + w0          - right censoring 



Augmented feature vectors zj
+[n+2] and zj

-[n+2]    

(j{1,…., m})                                                                                 (12) 

if  (j
0) then  zj

+[n+2] = [xj[n]T, 1, -tj
-]T,   else zj

+[n +2] = 0 

if  (j
   0) then  zj

-[n+2] = [xj[n]T, 1, -tj
+]T,  else  zj

-[n +2] = 0 

and 

             v[n +2] = [v1,…,vn+2]
T = [w[n]T, w0, b]T 

 

where v[n+2]Rn+2 and b is the interval parameter (b R1). 
 

The positive set Z+[n+2] and the negative set Z-[n+2] 

The positive set Z+[n+2] and the negative set Z-[n+2] are 

composed of such (n + 2) - dimensional vectors zj
+[n+2] 

(jJ+) and zj
+[n+2] ] (j J+) that are  different from zero :  

/      Z+[n+2] = {zj
+[n+2]: j J+}  and                                    (13) 

      Z-[n+2] = {zj
-[n+2] ]: j J-}  



Linear separability of the sets Z+[n+2] and Z+[n+2]  
 

 

We are examining the possibility of separating the sets  

Z+[n+2] and Z-[n+2] by the hyperplane H(v[n+2],0) in the 

(n + 2) – dimensional feature space F[n+2].  

 

Definition: The sets Z+ and Z- (12) are linearly separable if 

and only if the below conditions are fulfilled: 

 

 ( v[n+2] = [w[n+1]T, b]T                                                (14) 

     (j{1,…., m})              v[n+2]Tzj
+[n+2]  1                                          

and                                   v[n+2]Tzj
-[n+2]  -1 



Linear separability of the sets Z+[n+2] and Z+[n+2] 

 

If the inequalities (13) hold, then all the elements zj
+[n+2] of the set 

Z+[n+2] (12) can be situated on the positive side of the hyperplane 

H(v[n+2],0)  and all the elements xj
-[n+2] of the set R- can be 

situated on the negative side of this hyperplane. 

 

 

 

 

 

 

 

 

 

 

 

[-, z2
+[n+2] ],  [-, z6

+[n+2]] - the left censored observations  

[z4
+[n+2], +] - the right censored observation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

he positive set R+ is composed of m augmented vectors xj
+[n+2] (8) and 

the negative set R- is composed of m augmented vectors xj
-[n+2]: 

 

         R+ = {xj
+[n+2]}  and  R- = {xj

-[n+2]}, where j = 1,…, m       (9) 
 

We will examine the possibility separation of the sets R+ and R- (9) by a 

such hyperplane H(v[n+2],0) in the (n + 2) – dimensional feature 

space F[n+2] which passes through the point 0 (origin) of this space:   

 

H(v[n+2]) = {x[n+2]  F[n+2]: v[n+2]Tx[n+2] = 0}            (10) 
 

Definition 1: The sets R+ and R- (9) are linearly separable if and only if 

the below conditions are fulfilled: 
 

 ( v[n+2] = [w[n+1]T, b]T )                                                              (10) 
 

     (j{1,…., m})              v[n+2]Txj
+[n+2]  0  

                               and         v[n+2]Txj
-[n+2]  0 

z1
- 

z1
 

z2
 

v[n+2]  

Z+[n+2]  

Z-[n+2]  

z1
+ 

z2
+ z3

+ 

z5
+ 

z6
+ 

z7
+ 

z3
- z4

- 

x5
- 

z7
- 



Minimisation of the CPL criterion function (w)  

The basis exchange algorithms which are similar to the 

linear programming, allow to find the minimum of the 

function (v) in an efficient manner, even in the case of 

large, multidimensional data sets Z+ and Z-  (13): 

 

* = (v*) = min (v)  0                             (15) 
                                                                v 

The optimal parameter vector v*[n+2] = [w*[n]T, w0
*, b *]T 

can be used in the definition of the optimal prognostic 

model (1) 

 

T *(x[n]) = (w*[n] / b*)Tx[n] + w0
*/ b* T               (16)  



Example 2: Prognostic model selection on the 

Breast Cancer survival data set  

Data set: 

The Breast cancer data set (van’t Veer et al., 2002, van de Vijver et al., 

2002) consists of patient samples from primary invasive breast 

carcinomas. 

Number of patients: 295 

Number of features (genes): 4919 

Each patients has a specified time value measured from start of 

observation until death or censoring. 216 patients (73%) were still alive 

at the final follow-up visit (censored observations). 

van’t Veer, L. J., et al. (2002). Gene expression profiling predicts clinical outcome of 

breast cancer, Nature, 415(6871), pp. 530–536 

Vijver M.J. van de, et al. (2002). A gene-expression signature as a predictor of survival 

in breast cancer, N Engl J Med, 347:1999-2009. 



The  apparent error (AE) and the cross-validation error (CVE) in different feature 

subspaces Fk[nk] of the Breast cancer data set. 

Bobrowski L, Łukaszuk T.:  Prognostic Modeling with High Dimensional and 

Censored Data, pp. 178 – 193 in: Advances in Data Mining, P. Perner (Ed.), 

Springer, Berlin 2012   

Example 2: Results of the RLS feature selection   



K-M –Kaplan-Meier estimator 

model II  - T*(x[160]) maximal margin 

model III - T*(x[99]) minimal CVE 

model IV - T*(x[58]) second RLS stop criterion 

 

Survival probability 



Remarks 
The CPL criterion functions allows to combine the feature 

subset selection process with a search for the optimal 

parameters of the designed prognostic models (model 

selection). Such procedure gives possibility for designing 

regression models also on the basis of such high-dimensional 

data as genetic data sets with censored values of dependent 

variable. This novel approach was presented for the first time 

at the conference ICDM 2012 (Industrial Conference on Data 

Mining) in Berlin (L. Bobrowski, T. Łukaszuk,  Prognostic 

Modeling with High Dimensional and Censored Data, pp. 178 

– 193 in: Advances in Data Mining, P. Perner (Ed.), Springer, 

Berlin 2012). The article was honored by the Best Paper 

Aword:  http://www.data-mining-forum.de/paper_award_2012.php 

 

 

 

http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php
http://www.data-mining-forum.de/paper_award_2012.php


Best Paper Award 2012 

Sculpture "Everything is possible" 

Berlin 2012 

http://data-mining-forum.de/tinc?key=oMgyxfat
http://data-mining-forum.de/tinc?key=0VHoHA50


VI. Ranked regression models 



Learning data set in the ranked regression  
 

In the case of the ranked regression some additional knowledge about 

feature vectors xj[n] is given in the form of ranked relationship      

xj[n] xk[n] inside selected pairs {xj[n],xk[n]}, where (j,k)  Ip. In this 

case, the learning data set  Cm can have the below form:    

  

   Cm = {xj[n],xj[n] xk[n]}                                    (17)  
 

where j{1,…..,m} and (j,k)  Ip. 

 

The linear transformation y = w[n]Tx[n] constitutes the ranked  

regression model if it preserves the below implications for a 

possibly large number of the ranked relations xj[n] xk[n]: 

 

         (xj[n] xk[n])  (w[n]Txj[n]  w[n]Txk[n])            (18) 
 



Ranked linear transformations 
 

Linear transformations y = wTx of n-dimensional feature 

vectors xj (xjRn) on the points yj on the line R1 (yj  R1): 

 

(j  {1,…, m})      yj = w[n]Txj[n]          (19) 

 
where w[n] = [w1,…., wn]

T is the parameter vector. 

 

Definition 2: The line y = w[n]Tx[n] constitutes the ranked risk 

model if it preserves the below implications for possibly large  

number of the ranked relations Oj  Ok (3): 

 

(Oj is less risky than Ok)  (w[n]Txj[n]  w[n]Txk[n])  (20) 



   x4  x1  

   x1  x5  

   x5  x3  

   x3  x2  
yj = wT xj 

  y1 

  y4 

  y5 

  y3 

  y2 

 y 

L. Bobrowski, “Ranked modelling with feature selection based on the      

CPL criterion functions”, in: Machine Learning and Data Mining in  

Pattern Recognition,  Eds. P. Perner et al., Lecture Notes in Computer 

Science, vol. 3587, Springer Verlag, Berlin 2005 

Ranked linear transformation - Example 

ranked             ranked linear          a trend in data        

relations          transformation  



Ranked relations in survival data 

Definition 1: If the real survival time Tj of the j-th patient Oj is 

greater than the time Tk of the k-th patient Ok, then the ordinal 

relation Oj  Ok (Oj is less risky than Ok) takes place.  

 

 (Tj  Tk )  (Oj  Ok)                            (21) 
or 

(k = 1 and  tj    tk)  (Oj  Ok)                  (22) 



Survival data (cont.) 

 
The real survival time Tj is the time interval between the  

entry of the j-th patient Oj into the study and the failure 

(event, death), where  

 

(j{1,….,m})      Tj  = tj     if    j = 1               (23)        

                                  Tj    tj     if    j = 0 

t 

t 

0 

0 
 ( 

 t1 

t2 

2 = 0 

1 = 1 T1 = t1 

T2  t2 

O1 

O2 

 x 

t2 - the right censored observation 



Survival data (cont.) 

 

Example 1 (the right censored observations t2 and t4): 

t 

t 

0 

0 

 x 
 t1 

t2 

2 = 0 

1 = 1 T1 = t1 

T2  t2 

t 

t 

( 

 x 
0 

0 

t3 

t4 

Ranked relations: O1  O3;  O2  O3; O4  O1; O4  O3 

There are no ranked relations between patients O2 and O1 or O2 and O4  

T3 = t3 

T4  t4 

3 = 1 

4 = 0 

( 

O1 

O2 

O3 

O4 ( 



Survival data (cont.) 

Example 2 (the left censored observation t2 and the right 

censored observation t4): 

t 

t 

0 

0 

 x 
 t1 

t2 

2 = 0 

1 = 1 T1 = t1 

T2  t2 

t 

t 

( 

 x 
0 

0 

t3 

t4 

Ranked relations: O1  O2,  O1  O3, O4  O1, O4  O2, O4  O3.  

There is no ranked relation between patients O2 and O1. 

T3 = t3 

T4  t4 

3 = 1 

4 = 0 

) 

O1 

O2 

O3 

O4 ( 



Positive and negative sets  
of the differential vectors 

  

The positive G+ and the negative G- sets of the 

differential vectors rjj = xj - xj:  

 

G+ = {rjj = xj - xj:  j   j  and   Oj  Oj}   (24)  

 G- = {rjj = xj - xj:  j   j  and   Oj  Oj} 
 

We are examining the possibility of the sets G+ and 

G- separation by a hyperplane H(w) which passes 

through the origin 0 of the feature space:       

 

 H(w) =  {x: wTx   = 0}                        (25) 



 Linear separability with the treshold equal to zero  
                                                                                                             
Definition 3: The sets G+ and G- (7) are linearly separable with 

the threshold equal to zero if and only if there exists such a 

parameter vector w that: 
 

 ( rjj G+)    (w)T rjj  0                              (26)           

                        (rjj  G-)    (w)T rjj  0                                                     
 

or          (w) (rjj  G+)  (w)T rjj    1                             (27) 

                        (rjj  G-)  (w)Trjj    -1                                                                                 
w 

x1 

x2 



CPL penalty functions jj
+(w)  and jj

+(w)  

(rjj  G+) 

                       1 - wTrjj             if  w
T rjj  < 1 

 jj
+(w)  =                                                        (29) 

                           0                  if  wT rjj    1 

and   

( rjj  G-) 

                      1  + wT rjj         if   w
T rjj  > -1  

jj
-(w) =                                                        (30) 

                                0              if   wT rjj   -1  



 Criterion function (w)  

The criterion function (w) is the weighted sum of 

the penalty functions  jj
+(w) and jj

-(w) 

 

(w)  =   gjj’ jj
+(w)  +   gjj’ jj

-(w)      (31) 

                       (j,j)I+                        (j,j)I-                

where gjj’ (gjj’ > 0) is a positive parameter (price) 

related to the pair {xj,xj} (j < j). 

I+ is the set of indices (j, j) of the vectors rjj    

     belonging to G+. 

I- is the set of indices (j, j) of the vectors rjj    

     belonging to G-.   



VII. Diagnostic maps of the system Hepar 

 

L. Bobrowski, H. Wasyluk, “Induction of Diagnostic Support Rules 

through Data  Mapping - on the Example of the Hepar system”, pp. 3 – 

14 in: Biocybernetics  and  Biomedical Engineering, Vol. 27, Nr 3, 2007 



Diagnostic maps of the system Hepar 
 

The learning sets Ck represent seven liver diseases wk listed below:   

   

w1 – Cirrhosis hepatis                       C1 –   382 patients 

w2 – Hepatitis chronica                     C2 –   373 patients 

w3 – Carcinoma                                 C3 –     20 patients 

w4 – H-biopsy negative                      C4 –    16 patients 

w5 – Hepatitis acuta                          C5  –      9 patients 

w6 – Hepatitis subacuta                     C6  –     9 patients 

w7 – HBV-positive                              C7  –     5 patients   

                                                    TOTAL:   814 

Each patient Oj from the sets Ck has been represented by the feature 

vector xj = [xj1,..,xjn]
T of the dimensionality n = 40. Numerical results of 

both laboratory tests (xjiR1) as well as the patient symptoms                

(xji{0,1}) have been used in computations. The diagnostic maps 

resulted from the affine (linear) transformation of the 40 - dimensional 

feature vectors xj on the visualizing plane.  

  

 



The diagnostic map of the system Hepar with the below structure : 

 the upper-left quarter  –  C2, the upper-right quarter – C3  C5  C6  C7,  

the lower-right quarter  –  C1, the lower-left quarter    – C4 

 



Allocation 

A 

Allocation 

B 

Allocation 

C 

Allocation 

D 

Success 

rate (%) 

Class A 2 8 0 33 4.7 

Class B 0 353 9 20 94.6 

Class C 0 2 7 7 43.6 

Class D 4 18 9 357 93.4 

TOTAL 88.3 

Tab. 1: Allocation of the feature vectors xj[n] by the K – NN rule (9) with K = 10. 

Tab. 2: Allocation of the transformed vectors yj[2] (26) on the map (Fig. 1) by the K – NN rule (9)  with K = 10. 

 

Allocation 

A 

Allocation 

B 

Allocation 

C 

Allocation 

D 

Success 

rate (%) 

Class A 31 2 1 9 72.1 

Class B 0 369 1 3 98.9 

Class C 0 3 11 2 68.8 

Class D 6 2 3 371 97.1 

TOTAL 96.0 

Tab. 1: Allocation of the feature vectors xj[40] by the K – NN rule   

with K = 10. 

Tab. 2: Allocation of the transformed vectors yj[2] on the diagnostic map 

by the K – NN rule with K = 10. 



VIII. Linearization of the learning sets by 

ranked layers of binary classifiers 



        BINARY CLASSIFIERS Qi(vi)  
(i = 1,.....,L) 

x =  [x1,..., xn]
T - the input vector 

ri = ri(vi;x) – the binary output (ri{0,1}),  

where ri(vi;x) is the activation function 

v =  [v1,...., vn]
T – vector of parameters vi 

Si =  {x: ri(vi;x) = 1} – activation field 

vi = [vi1,.......,vin]
T   - parameter vector 

                             

Qi(vi) x ri  {0,1} 



RANKED LAYERS OF BINARY CLASSIFIERS  

y 

w1 

C3 

C2 

C\ 

C3 

C1\ 

C2 

w3 
w2 

the first ranked layer of 

binary classifiers 

the second ranked layer 

of  formal neurons 

(the decision layer) 
x 

y = F( x ) 

H(w,) = {x : wTx = } 

1 
1

0

0 

0

1

0 

0

0

1 



 

BINARY CLASSIFIERS  

Example 1: Formal neurons NF(wi,i) 

 

                        1     if    wTx    

 r = r(w,;x) =  

                            0     if    wTx   
where: 

x = [x1,....,xn]
T  - input (feature) vector 

w = [w1,....,wn]
T - weigth vector (w  Rn) 

 - threshold  (  R1) 

                         

 

xn 

w1 
x1 

r 

 

wn 

x2 

x1 

x2 

wi 

0 

Si - activation field  



 

LAYERS OF BINARY CLASSIFIERS  

Example: The layer of four formal neurons NF(wi,i) 

 

 

 

x1 xn 

w1, 1 

r1 

w2, 2 

r2 

w3, 3 

r3 

w4, 4 

r4 

………… 
 

x1 

x2 w2 

w1 

w3 

w4 

[0,0,1,0] 

[0,0,1,1] - activation fields Si  

[0,0,0,1] 

[1,0,0,1] 

  ……..    



Learning sets G+ and G-  

   which are not linearly separable  

G+ G- 

w 



          

iiiINDUCTION OF LINEAR SEPARABILTY BY A 

RANKED LAYER OF BINARY CLASSIFIERS Qi(vi) 

 The k-th transformed set Dk is obtained in result of the transformation of 

all feature vectors xj(k) from the k-th learning set Ck:   

 

                              Dk =  {rj(k): (j  Jk)  rj(k) = r(V;xj(k))} 
 

 

Theorem: Transformation of feature vectors xj(k) by a such layer of L 

binary classifiers Qi(vi) which is ranked in respect to the separable 

learning sets Ck results in linear separability of the transformed sets Dk: 
 

(k  {1,...,K})     (vkRL)  (rj(k) Dk)   vk
Trj(k)  0. 

                             and  (rj(i)  Di, i  k)  vk
Trj(i) < 0 

 

Ranked layer induces linear separability with the threshold k equal to 

zero (k= 0) of the transformed learning sets Ck. 
 

Ranked layer can be designed in result of sequence of admissible cuts 

of the learning sets Ck. 



RANKED LAYERS OF ORMAL N URONS (I 

 

L. Bobrowski, "Design of piecewise linear classifiers from formal neurons 

by some basis exchange technique” 

Pattern Recognition, 24(9), pp. 863-870, 1991 

RANKED LAYERS OF FORMAL NEURONS 
An example of an admissible cut by the hyperplane 

 H(w,) ={x: wTx= } (formal neuron FN(w,)). 

  



RANKED LAYERS OF  

FORMAL NEURONS (II) 
 

 

x1 x2 

w1, 1 

r1 

w2, 2 

r2 

w3, 3 

r3 

w4, 4 

r4 



                        1     if    wixi  i  

 r = r(wi,i;xi) =  

                            0     if    wixi  i  
 

where xi is the i-th component of the feature vector x 

   

Logical rules 

  I.     if  (xi  ai)  then  ri = 1, else ri = 0,   or  

 II.    if  (xi   ai)  then  ri = 1, else ri = 0 

 

ri 

i 

wi 

xi 

x1 

x2 

e1 

0 

Si 

i 

 

BINARY CLASSIFIERS  

Example 2: Logical elements LE(wi,i) 

 



RANKED LAYERS OF  

LOGICAL ELEMENTS LE(wi,i)  

C+ 

C- 

w1,1 

e1 

e2 

w2,2 

w3,3 

- e1 

 

x1 x2 

w1, 1 

r1 

w2, 2 

r2 

w3, 3 

r3 

w4, 4 

r4 



                      1     if    (x- c)T(x - c) ≤   

 r = r(c,;x) = 

                          0     if    (x- c)T(x - c)   
where: 

x =  [x1,...,xn]
T  - feature vector 

c =  [c1,...,cn]
T    - ball center 

 -  ball radius 

 

r 

x1 

x2 

0 

S1 

x 

Si 
Si 

KL2(ci,i) 

 

BINARY CLASSIFIERS  

Example 3: Radial neurons  RN(ci, i) 

 



Toy example data set 

L. Bobrowski, M. Topczewska (2015), Linearizing layers of radial 

binary classifiers with movable centers , 

 pp. 771 – 78 in:  Pattern Anal Applic, 18(4), 2015  



Designing hierarchical  networks of 

binary classifiers 

 

 

 



FN(v1) 

FN(v2) 

r0 r1 r2 r3 

input layer 

hidden layer 

decision layer 



HIERARCHICAL NEURAL NETWORKS 

1
st
 class

detector

K
th
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detector

…

.

…

…

…

…

Second layer

1
st
 simple detector

L
st
 simple detector

DATA FLOW

vector data flow single bit data flow formal neuron

First layer



Designing hierarchical  networks of binary classifiers 

    Problem 1: Choice of the network architecture.  

How to fit network architecture to the problem? 

How many layers should be in the network?  

Which and how much should be the binary classifiers in each layer? 

- the method of trial and error 

- the ranked strategy or the dipolar strategy   
 

 

  Problem 2: Choice of network parameters. 

-   back-propagation algorithm  

- a modified error-correction algorithm with a fixed decomposition rule 

sk(w[n]) of the teachers decision w[n] aimed at the k-th element of 

the network during the n-th learning step (n = 1,2,…), where 

w[n]{1,…,K} and sk(w[n]) {1, 0} 

- minimization of convex and piecewise linear (CPL) criterion functions   



FN(v1) 

FN(v2) 

r0 rK+1 

Input layer 

K-th hidden layer 

Decision layer 

First hidden layer 

 

Deep Learning 

… moving beyond machine learning since 2006! 

                                                                … BIG DATA! 
 

http://deeplearning.net/
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