Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie

Analiza danych LIDAR dla drzew i powierzchni gruntu metodami akumulacyjnymi

Marcin Bator, Leszek Chmielewski, Arkadiusz Orłowski

Wydział Zastosowań Informatyki i Matematyki Szkoła Główna Gospodarstwa Wiejskiego w Warszawie WZIM SGGW

http://www.wzim.sggw.pl

Seminarium MiNI PW, Warszawa, 5 stycznia 2017

(日) (日) (日) (日) (日) (日)

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
0000	000000000	0000000000000	000000000000000000000000000	O
Plan				

- 2 Rozmyte histogramy
- IT dla okręgów
- IT dla płaszczyzn

Przepraszam za mieszaninę języków. LC

< ロト < 母 > < 臣 > < 臣 > 王目 の < で</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
0000	00000000	0000000000000	000000000000000000000000000000000000000	
Na podstawi	е			

Autorzy:

Marcin Bator, Leszek Chmielewski, Arkadiusz Orłowski, Michał Zasada, Krzysztof Stereńczak, Paweł Strzeliński, Marcin Olejniczak

Czasopismo i konferencje:

- PAA (Chmielewski 2006)
- ICCVG (Chmielewski, Bator, Zasada, et al. 2010; Chmielewski and Bator 2012; Chmielewski, Bator, and Olejniczak 2014)
- CAIP (Chmielewski and Orłowski 2015)
- ICIAP (Bator, Chmielewski, and Orłowski 2015b)
- PSIVT (Bator, Chmielewski, and Orłowski 2015a)

endrometria	Rozmyte histogramy	HT dla okręgów
000	00000000	0000000000000

Obiekt pomiaru

Las na Mazowszu

Nasz cel

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
0000	00000000	0000000000000	000000000000000000000000000000000000000	

Co nas interesuje w drzewie?

Miąższość

- objętość drewna w jednym drzewie [m³]
- lub na jednostce powierzchni lasu [m³/ha]
- średnice od 8 cm

• Jak znaleźć?

- wysokość strzały pnia
- pierśnica średnica na wysokości 1.3 m
- model geometryczny
 - liczba kształtu
 - bryły obrotowe (stożki krzywoliniowe) o różnych równaniach
 - ich parametry
- pomiar bezpośredni
 - średnice na wielu wysokościach
 - rozgałęzienia
 - modelowanie geometrii

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
0000	00000000	0000000000000	000000000000000000000000000000000000000	

Co nas interesuje w drzewie?

Miąższość

- objętość drewna w jednym drzewie [m³]
- lub na jednostce powierzchni lasu [m³/ha]
- średnice od 8 cm
- Jak znaleźć?
 - wysokość strzały pnia
 - pierśnica średnica na wysokości 1.3 m
 - model geometryczny
 - liczba kształtu
 - bryły obrotowe (stożki krzywoliniowe) o różnych równaniach
 - ich parametry
 - pomiar bezpośredni
 - średnice na wielu wysokościach
 - rozgałęzienia
 - modelowanie geometrii

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
0000	00000000	0000000000000	000000000000000000000000000000000000000	

Co nas interesuje w drzewie?

Miąższość

- objętość drewna w jednym drzewie [m³]
- lub na jednostce powierzchni lasu [m³/ha]
- średnice od 8 cm
- Jak znaleźć?
 - wysokość strzały pnia
 - pierśnica średnica na wysokości 1.3 m
 - model geometryczny
 - liczba kształtu
 - bryły obrotowe (stożki krzywoliniowe) o różnych równaniach
 - ich parametry
 - pomiar bezpośredni
 - średnice na wielu wysokościach
 - rozgałęzienia
 - modelowanie geometrii

[(Gach 2016) i strony sklepów]

nc	rometria		
00	•		

D

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

FARO LS HE880 Lepsze narzędzie

Można przewieźć w bagażniku Ceny od 30 Kzł

0

10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5

6 7 8 9

Too fine

3

Too coarse

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Tradeoff: precision \leftrightarrow certainty of the result (Strauss 1999)
- Instead of controlling the quantization, use histogram fuzzification

Rozmyte histogramy

HT dla okręgów 0000000000000000 HT dla płaszczyzn

Podsumowanie

Rozmycie, PAA 2006

Histogram and fuzzy histogram Example of a fuzzification function

$$\mu_{G}(i) = \begin{cases} e^{-\frac{j^{2}}{2s^{2}}} & \text{if } i \in [-3s, 3s] \cap \mathbb{C} \\ 0 & \text{otherwise} \end{cases}$$

$$\mu_2(i) = \begin{cases} 1 - \left(\frac{i}{s}\right)^2 & \text{if } i \in [-s, s] \cap \mathbb{C} \\ 0 & \text{otherwise} \end{cases}$$

• Question of scale s

 $0.0 \frac{1}{-3} - 2 - 1 = 0 = 1 = 2$ *i*

< ロ > < 同 > < 三 > < 三 > 三 □ > < ○ < ○ </p>

▶ detailed formulae

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	0000000			
Skala, PAA 2006				
Example				
Mode \leftrightarrow mean				

(a) h^f_j for various scales
(b) projection on Ojs

circles: mode – fuzzy histogram *crosses*: mean – crisp histogram

squares: median –

crisp histogram

- limit fuzzification (L):
 when scale s = s_l is such, that mode=mean
- fuzzification degree: $d_f = \min\left(\frac{s}{s_l}, 1\right)$
- weak fuzzification (W): $d_f \ll 1$
- Weak fuzzification increases the robustness of the mode
- Weak fuzzification \leftarrow enough to know limit fuzzification
- Limit fuzzification: depends on the domain of data and on fuzzification function

< □ > < 同 > < E > < E > E = 900

- limit fuzzification (L):
 when scale s = s_l is such, that mode=mean
- fuzzification degree: $d_f = \min\left(\frac{s}{s_l}, 1\right)$
- weak fuzzification (W): $d_f \ll 1$
- Weak fuzzification increases the robustness of the mode
- \bullet Weak fuzzification \longleftarrow enough to know limit fuzzification
- Limit fuzzification: depends on the domain of data and on fuzzification function

< □ > < 同 > < E > < E > E = 900

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	000000000			
Funkcja rozmycia, PAA 20	06			
Limit fuzzific Formulae	cation – aperiodi	c case		

• Square fuzzification function, truncated

$$\mu_2(x) = \left\{ egin{array}{cc} 1 - \left(rac{x}{s}
ight)^2 & ext{if } |x| \leq s \ 0 & ext{otherwise} \ . \end{array}
ight.$$

Theorem If $\forall_{i \in \mathcal{I}}$ support $\mu_2(x - i)$ comprises the whole domain of \mathcal{X} , then the fuzzification is the limit fuzzification.

▶ detailed formulae

< ロト < 母 ト < 臣 ト < 臣 ト 王 三 の < で</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	000000000			
Funkcja rozmycia, P	AA 2006			
l imit fuzz	vification – aperi	ndic case		

Illustration

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	000000000			
Funkcja rozmycia, PAA 20	006			
Limit fuzzifi Formulae	cation – periodic	case		

• Fuzzification function cos², clipped

$$\mu_c(\xi) = \begin{cases} \cos^2 \frac{\pi \phi(\xi)}{2s} & \text{if } \phi(\xi) \in [-s, s], \\ 0 & \text{otherwise }. \end{cases}$$

Theorem If the support $\mu_c(\xi)$ comprises the whole period T, then the fuzzification is the limit fuzzification.

< ロ > < 母 > < 臣 > < 臣 > 三日 = の < @</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	000000000			
Funkcja rozmycia, PAA 2006				

Limit fuzzification – periodic case

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
	00000000			
Podsumowanie, PAA 2006				
Fuzzification	degree			

- Weak fuzzification $d_f \in [0.05, 0.20]$
 - For robusness against outlying data
- Limit fuzzification $d_f = 1$
 - if the robustness is not required
 - $\bullet \mbox{ accumulation } \longrightarrow \mbox{ simple summation }$
- Choice of the scale through the fuzzification degree d_f

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Detekcja drzew i pierśnica, ICCVG 2010

Widok i dane

(a) Las sosnowy, Głuchów, nadleśnictwo Grójec
 (b) Przekrój w pobliżu płaszczyzny pierśnicy

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
		000000000000000000000000000000000000000		
Detekcja drzew i pierśnica	, ICCVG 2010			
Dane LIDAF Głuchów	R			

All the data sets G01-G15 were scanned in 2011 at 15 stands near Głuchów in the Grójec Forest District, Mazovian Voivodship (Central Poland), with the terrestrial LIDAR scanner FARO LS HE880.

A data set for each stand was collected from a single position or three positions of the scanner.

The sets contained between 12 and 22 millions of measurement points belonging to the trees, bushes and grass, and the ground.

Rozmyte histogramy

 HT dla płaszczyzn

Podsumowanie

Detekcja drzew i pierśnica, ICCVG 2010

Segmentacja – detekcja drzew

(a) Data of previous Fig. fuzzified up to the limit with respect to an expected thickest tree.
 (b) Image a thresholded at 3% of maximum giving tree 72 candidates. Selected example trees marked: far - difficult, near - easy.

Rozmyte histogramy

 Podsumowanie

Detekcja drzew i pierśnica, ICCVG 2010

Detekcja kół i pomiar średnic Drzewo trudne, dalekie

Obliczenia dla warstwy 1 m wokół poziomu pierśnicy, contract i statu za statu pierśnicy, contract i statu pierśnicy, contract i statu pierśnicy, contract i statu pierśnicy, contract pierwski pierwski

Rozmyte histogramy

HT dla okręgów

Podsumowanie

Detekcja drzew i pierśnica, ICCVG 2010

Detekcja kół i pomiar średnic Drzewo łatwe, bliskie

Rozmyte histogramy

HT dla okręgów

Podsumowanie

Nieprzezroczystość obiektu, ICCVG 2012

Dwupunktowa transformata Hougha Przypadek ogólny

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Nieprzezroczystość obiektu, ICCVG 2012

Dwupunktowa transformata Hougha Minimalny promień i odpowiednia strona

Geometry for conditions checked during accumulation. Minimum possible circle $s_m(C_m, \rho_m)$ – black; impossible circle s_{i2} – grey.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowar
		000000000000000000000000000000000000000		
Nieprzezroczystość obiektu,	ICCVG 2012			

Przykład wyników

W tej publikacji pojawiła się także koncepcja głosowania przeciw

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Rozmyte histogramy

HT dla okręgów ○○○○○●○○○○○○ Podsumowanie

Głosowanie przeciw, ICCVG 2014

Przypadki danych przeczących

Dane przeczą istnieniu obiektu: słabo i nielicznie (lewa); silnie i znacząco (prawa)

Rozmyte histogramy

H⊤ dla okręgów 000000000000000 HT dla płaszczyzn

Podsumowanie

Głosowanie przeciw, ICCVG 2014

Obszary dozwolone i niedozwolone _{Ogólna geometria}

 $\mathsf{Obszary:}\ \oplus\ \mathsf{dozwolone,}\ \ominus\ \mathsf{zabronione}$

Przed obiektem

 $\exists x_f : \mu_f(x_f) < 0$, więc nie jest to funkcja przynależności w ścisłym sensie. Raczej reprezentuje ona pozytywne i negatywne głosowanie.

Za obiektem

 $\exists x_b : \mu_b(x_b) < 0$, więc nie jest to funkcja przynależności w ścisłym sensie. Raczej reprezentuje ona pozytywne i negatywne głosowanie.

・ロト < 回ト < 三ト < 三ト < 三ト < 回ト < ロト
</p>

Rozmyte histogramy

HT dla okręgów ○○○○○○○○○○○○ HT dla płaszczyzn

Podsumowanie

Głosowanie przeciw, ICCVG 2014

Przykład _{Dane}

Surowe dane

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

< ロト < 母 > < 臣 > < 臣 > 王目 の < で</p>

Głosowanie przeciw, ICCVG 2014

Przykład ^{Wyniki:} segmentacja

Segmentacja: rozmycie, 180 maksimów

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Głosowanie przeciw, ICCVG 2014

Przykład ^{Wyniki:} detekcja

Detekcja: 180 obiektów, 11 prawdziwie pozytywnych, 169 fałszywie pozytywnych E - Ele OQC

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Głosowanie przeciw, ICCVG 2014

Przykład ^{Wyniki:} eliminacja

Eliminacja: lokalnie 132/169, zostało 37 FP; globalnie 166/169, zostało 3, FP = 11, TP, = - o a contractione in the second secon
Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
		0000000000000		
Głosowanie przeciw, ICCV	G 2014			
Podsumowar	nie			

- Można głosować również przeciw
- Ta koncepcja pojawiła się w literaturze tylko raz (Brown, Curtiss, and Sher 1983)
 dla wyostrzenia maksimum w akumulatorze, nie dla uwzględnienia specyfiki obiektu
- Istnieją szybsze metody, np. wykorzystująca sortowanie względem kąta i badająca znaczące zmiany odległości (MB)
- Szukamy innych zastosowań, nie tylko do obiektów nieprzezroczystych

- Błędy cyfrowych modeli terenu (DTM) znajdowanych z pomiaru z powietrza Airborne Laser Scanning (ALS) ≥ 0.5 m (Stereńczak and Kozak 2011).
- Na równaniach, w pojedynczych stanowiskach pomiarowych, wystarczy jedna płaszczyzna.

< □ > < 同 > < E > < E > E = 900

- Większość punktów pomiarowych to ziemia. Większość stanowisk to równiny.
- Skorzystamy z nadmiarowości danych i tego, że wystarczy płaszczyzna.

Dendrometria Rozmyte histogramy HT dla okregów Lokalna Aproksymacja Gruntu, CAIP 2015

Transformata Hougha dla płaszczyzny Innowacie

HT dla płaszczyzn

- Niewiele jest literatury o HT dla płaszczyzn
- Klasyczna HT jednopunktowa jest nieefektywna (Tarsha-Kurdi and Grussenmever 2007)
- Wersja trójpunktowa (podzbiór głosujący ≡ elementarny) z ciekawą konstrukcją akumulatora (Borrmann, Elseberg, et al. 2011) – zbyt dużo głosowań
- Korzystano z uporzadkowania punktów pomiarowych (Grant, Voorhies, and Itti 2013; Hulik et al. 2014; Limberger and Oliveira 2015)
- Tu nie skorzystamy z uporządkowania, ponieważ go nie mamy
- Zastosujemy wersje jednopunktowa, stosunkowo efektywna
- Zdekomponujemy akumulator: zamiast 3D bedzie 1D, 2D HT iteracyjna (Habib and
- Dodamy hierarchie i nierównomierna randomizacie tego jeszcze nie było

Transformata Hougha dla płaszczyzny

- Niewiele jest literatury o HT dla płaszczyzn
- Klasyczna HT jednopunktowa jest nieefektywna (Tarsha-Kurdi and Grussenmeyer 2007)
- Wersja trójpunktowa (podzbiór głosujący \equiv elementarny) z ciekawą konstrukcją akumulatora (Borrmann, Elseberg, et al. 2011) zbyt dużo głosowań
- Korzystano z uporządkowania punktów pomiarowych (Grant, Voorhies, and Itti 2013; Hulik et al. 2014; Limberger and Oliveira 2015)
- Tu nie skorzystamy z uporządkowania, ponieważ go nie mamy
- Zastosujemy wersję jednopunktową, stosunkowo efektywną
- Zdekomponujemy akumulator: zamiast 3D będzie 1D, 2D HT iteracyjna (Habib and Schenk 1999)
- Dodamy hierarchię i nierównomierną randomizację tego jeszcze nie było

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacja	Gruntu, CAIP 2015			
Płaszczyzr ^{нт}	ia			

Assume the local ground model as

$$(x - x_0)n'_x + (y - y_0)n'_y + (z - z_0)n'_z = 0$$
 (1)

The normal vector does not have to be unit; instead, set $n'_z = 1$. Choose the reference point on axis Oz, so $x_0 = y_0 = 0$. Then

$$x n_x + y n_y + z - z_0 = 0$$
 . (2)

イロト (周) (日) (日) (日) (日)

Find the three parameters with an accumulation method.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacja Gru	ntu, CAIP 2015			
Dane to głów (nie drzewa)	vnie grunt			

Pionowe profile liczności punktów pomiarowych dla dwóch stanowisk: (\leftarrow) G01; (\rightarrow) G13. Pochodną pokazano aby podkreślić, że maksimum \equiv poziom gruntu. Obcięte maksima: (\leftarrow) 66 × 10⁶, (\rightarrow) 111 × 10⁶.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000 000000000000000000000000	
Lokalna Aproksymacj	ja Gruntu, CAIP 2015			
Algorytm _{Iteracje}				

To avoid the HT analysis in 3D, iterate (Habib and Schenk 1999):

```
Algorithm

set j=1

do

form and analyze the 1D accumulator for z_0 to find \widehat{z_0}^j

form and analyze the 2D accumulator for [n_x, n_y] to find [\widehat{n_x}, \widehat{n_y}]^j

j := j+1

while ( parameters change )
```

This was heavily criticised in another application (Chmielewski 2004) because it can fail for data with many outliers, but here it works well.

Accuracies: $\Delta z = 0.01 \text{ m}$ with 1×300 accumulator; $\Delta \alpha \approx 0.057^{\circ}$ with 2000×2000 accumulator \rightarrow accuracy 0.02 m height at distance 20 m.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacja 🤅	Gruntu, CAIP 2015			
Akumulato	ry			

Accumulators of height z_0 for all iterations: (\leftarrow) G01; (\rightarrow) G13

シック・目目 (ヨ> (ヨ> (国)) (国)

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacja	Gruntu, CAIP 2015			
Akumulato n_x, n_y	ory			

Accumulators of normal vector $[n_x, n_y]$ for last iteration, central part: (\leftarrow) G01; (\rightarrow) G13

<ロト < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowani
			000000000000000000000000000000000000000	
Lokalna Aproksymac	ja Gruntu, CAIP 2015			
Iteracie				

Szybka stabilizacja

<□> <0><</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymac	ja Gruntu, CAIP 2015			
Randomiz	acja			

Najwięcej danych jest w centrum

Zatem, dane w centrum należy pomijać częściej, niż na obrzeżach. Zróbmy to liniowo, od danego udziału do 1 przy r = 7.5 m, czyli *bardzo daleko* (Zasada, Stereńczak, Dudek, and Rybski 2013).

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymac	ja Gruntu, CAIP 2015			
Randomiz	acja			

Changes of results for G13 with the fraction of data drawn at random going down. Versions for randomization: (\leftarrow) constant, and (\rightarrow) variable with radius. In either case no breakdown point can be observed.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie		
			000000000000000000000000000000000000000			
Lokalna Aproksymacja Gru	Lokalna Aproksymacja Gruntu, CAIP 2015					
Randomizacj _{Zysk czasu}	ja i hierarchizacj	a				

Hierarchizacja akumulacji dla n_x , n_y , z redukcją rozmiaru akumulatora z 2000×2000 do 200×200, uzyskano przyspieszenie (VRHT: variably randomized HT, HVRHT: hierarchical VRHT):

			time [min]				
data set	$M[10^{6}]$	iterations	reading	<i>z</i> 0		$[n_x, n_y]$	
					HT	VRHT	HVRHT
G01	16.7	2	1	0.1	56	19	1.9
G13	15.8	1	1	0.1	28	9	0.9

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacj	a Gruntu, CAIP 2015			
Wyniki ^{Wizualnie dobre}	:			

Results for G13, variable randomization at 0.01. Cross-section for 5° wide sector for angle (a) 0° from *Ox*. Red arrow in (c): ≈ 16 cm. Errors ≤ 20 cm.

Dendrometria	Rozmyte histogramy	HT dla okręgów		HT dla płaszcz	yzn	Podsumowanie
0000	00000000	0000000000000	000	00000000000	000000000000000000000000000000000000000	
Lokalna Aproksymacja Gri	untu, CAIP 2015					
Myniki						
v v y mirki						
Wizualnie dobre						
			1			
		1		}		

Results for G13, variable randomization at 0.01. Cross-section for 5° wide sector for angle (b) 45° from Ox. Red arrow in (c): $\approx 16 \text{ cm}$. Errors $\leq 20 \text{ cm}$.

Rozmyte nistogramy	H I dia okręgow	H I dia praszczyzn	Podsumowanie
		000000000000000000000000000000000000000	
Gruntu, CAIP 2015			
	Rozmyte nistogramy 000000000 Gruntu, CAIP 2015	Cocmyte histogramy H i dia okręgow 000000000000000000000000000000000000	Cozmyte histogramy HT dia okręgow HT dia praszczych 000000000000000000000000000000000000

Results for G13, variable randomization at 0.01. Cross-section for 5° wide sector for angle (c) 90° from Ox. Red arrow in (c): ≈ 16 cm. Errors ≤ 20 cm.

Dendrometria	Rozmyte nistogramy	n i dia okręgow	H i dia piaszezyzn	Podsumowanie
			000000000000000000000000000000000000000	
Lokalna Aproksymacja	Gruntu, CAIP 2015			
Wyniki ^{Wizualnie dobre}				

Results for G13, variable randomization at 0.01. Cross-section for 5° wide sector for angle (d) 135° from *Ox*. Red arrow in (c): \approx 16 cm. Errors \leq 20 cm.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie		
			000000000000000000000000000000000000000			
Lokalna Aproksymacja Gruntu, CAIP 2015						
Podsumowa	nie					

- A method for finding a digital terrain model suitable for regions of plains has been proposed.
- It integrates randomization, iterative approach and hierarchy.
- The randomization with parameters varying in space seems to be an original contribution to the development of robust methods, at least in the domain of finding the digital terrain model from LIDAR data.

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Motywacja Próba obiektywizacji

- Znajdujemy poziom ziemi, ale jaka jest jego dokładność?
- Poważne źródła (Gorte 2015) odnoszą się do ocznej obserwacji jako ostatecznego kryterium
- Trudno uzyskać złoty standard jeden model ma służyć jako referencja dla drugiego
- Raportuje się dokładności rzędu 0.5 m (Stereńczak and Kozak 2011)
- Potrzeba miary, która wymagałaby tylko surowych danych pomiarowych

Ground is approximated with a plane Π in *Oxyz* expressed by

Oznaczenia

$$Ax + By + Cz + D = 0.$$

Denote *i*-th measurement point by $P_i = P_i(x_i, y_i, z_i)$, i = 1, ..., M. The signed distance between P_i and plane Π denoted by $d(P_i, \Pi)$ reads:

$$d(P_i,\Pi) = rac{A x_i + B y_i + C z_i + D}{\sqrt{A^2 + B^2 + C^2}}.$$

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

< ロト < 母 ト < 臣 ト < 臣 ト 王 三 の < で</p>

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Definicje miar Odległość MSE, ucinana

$$Q'_{1}(\Pi) = \sqrt{\frac{\sum_{i=1}^{M} (d'_{1}(P_{i},\Pi))^{2}}{\sum_{i=1}^{M} N'(P_{i},\Pi)}}$$
(3)

gdzie

$$d_{1}^{I}(P_{i},\Pi) = \begin{cases} d(P_{i},\Pi) & \text{jeśli} & |d(P_{i},\Pi)| < I \\ 0 & \text{przeciwnie} ; \end{cases}$$

$$N^{I}(P_{i},\Pi) = \begin{cases} 1 & \text{jeśli} & |d(P_{i},\Pi)| < I \\ 0 & \text{przeciwnie} . \end{cases}$$
(4)
$$(5)$$

Odległość średniokwadratowa, ucinana powyżej odległości *I*. Miara powinna być minimalizowana.

$$Q_2'(\Pi) = \sum_{i=1}^M N'(P_i, \Pi)$$
 (6)

< ロ > < 母 > < 臣 > < 臣 > 三日 = の < @</p>

Liczba punktów w warstwie pod i nad powierzchnią. Miara do maksymalizacji.

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

< □ > < 同 > < E > < E > E = 900

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Definicje miar Odległość MSE, ucinana

$$Q_{3}^{I}(\Pi) = \sum_{i=1}^{M} N_{3}^{I}(P_{i},\Pi), \text{ gdzie}$$

$$V_{3}^{I}(P_{i},\Pi) = \begin{cases} 1 \quad \text{jeśli} \quad 0 \leq d(P_{i},\Pi) < I \\ 0 \quad \text{przeciwnie} \end{cases}$$
(8)

Liczba punktów w warstwie nad powierzchnią. Miara do maksymalizacji.

Uwaga: Miary te można stosować również do powierzchni innych niż płaszczyzny.

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Dane do testów Jak wycinano?

Cutting sections in data

The 5° wide sectors were chosen, so nearly-2D data were obtained. Planar ground model Π was displaced in 2D w.r.t. position found with VRIHT in (Chmielewski and Orłowski 2015). 2D graphs of quality measures were plotted and assessed visually.

Rozmyte histogramy

HT dla okręgów 000000000000000 HT dla płaszczyzn

Podsumowanie

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Dane do testów Skąd wycinano?

Rozmyte histogramy

HT dla okręgów 0000000000000000 HT dla płaszczyzn

Podsumowanie

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Czy miara pozwala uzyskać klarowne ekstremum?

Rozmyte histogramy

HT dla okręgów 00000000000000 HT dla płaszczyzn

Podsumowanie

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Czy miara pozwala uzyskać klarowne ekstremum?

4日 + 4日 + 4日 + 4日 + 4日 - 900

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Czy miara pozwala uzyskać klarowne ekstremum? Q_3^{\prime}

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

< □ > < 同 > < E > < E > E = 900

Miary jakości lokalnej aproksymacji gruntu, ICIAP 2015

Podsumowanie

- Miara Q'_3 jest najlepsza
- Jest to liczba punktów w cienkiej warstwie nad poziomem gruntu
- Badano warstwy od 5 do 15 cm najlepiej 15
- Praktycznie: odpowiada to odbiciu os ściółki (trawa) rozsądnie

Sprawdzimy miarę Q'_3 stosując ją w procesie optymalizacji dla znalezienia powierzchni – Local Ground Approximation LGA:

Algorithm

choose starting solution and set it as current solution **do**

assess current solution assess solutions for neighboring values of parameters if (exists better neighboring solution) set best neighboring solution as current while (current solution is improved)

Przykład 1

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Miara jakości Q¹, w działaniu, PSIVT 2015

Full view of results for data set G06: section along Ox. Fragment in rectangle 5 times enlarged, so pixel $\equiv 0.1 \times 0.1$ m. Green: hill climbing, yellow: HT, red: HT variably randomized at 0.01 of the data.

Rozmyte histogramy

HT dla okręgów

HT dla płaszczyzn

Podsumowanie

Miara jakości Q¹, w działaniu, PSIVT 2015

Przykład 2

Full view of results for data set G06: section along Oy. Fragment in rectangle 5 times enlarged, so pixel $\equiv 0.1 \times 0.1$ m. Green: hill climbing, yellow: HT, red: HT variably randomized at 0.01 of the data.

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowani
			000000000000000000000000000000000000000	
Miara jakości Q [/] z w c	ziałaniu, PSIVT 2015			

Dalsze przykłady ...

<□> <0><</p>

Dendrometria	Rozmyte histogramy	HT dla okręgów	HT dla płaszczyzn	Podsumowanie		
				•		
Padsumowanie						

• Aby zmierzyć las ...

zakończenie

- Przede wszystkim: liczenie drzew, pierśnice, wysokości
- Do tego potrzebny jest model powierzchni ziemi
- Można to zrobić stosunkowo dobrze
- Prace są w toku ...
- W szczególności: dotyczące wysokości drzew i walidacji metod względem danych referencyjnych
- Prawdziwe wyzwanie: budowa modelu drzew w całości

< □ > < 同 > < E > < E > E = 900

References I

Bator, M., L. J. Chmielewski, and A. Orłowski (2015a, 23-27 Nov).
Heuristic assessment of parameters of the local ground approximation from terrestrial LIDAR data.
In F. Huang and A. Sugimoto (Eds.), *Image and Video Technology – PSIVT 2015 Workshops*, Volume 9555 of *Lecture Notes in Computer Science*, Auckland, New Zealand, pp. 88–97. Springer, 2016.
doi:10.1007/978-3-319-30285-0_8.

Bator, M., L. J. Chmielewski, and A. Orłowski (2015b, 7-11 Sep). Where is the ground? Quality measures for the planar digital terrain model in Terrestrial Laser Scanning. In V. Murino and E. Puppo (Eds.), *Image Analysis and Processing: Proc. Int. Conf. ICIAP 2015*, Volume 9279 of *Lecture Notes in Computer Science*, Genoa, Italy, pp. 343–353. Springer. doi:10.1007/978-3-319-23231-7_31.

Borrmann, D., J. Elseberg, et al. (2011). The 3d hough transform for plane detection in point clouds: A review and a new accumulator design. *3D Research* 2(2). doi:10.1007/3DRes.02(2011)3.

Brown, C., M. Curtiss, and D. Sher (1983, Aug).

Advanced Hough transform implementations.

In A. Bundy (Ed.), Proc. 8th Int. Joint Conf. Artificial Intelligence IJCAI 83, Karlsruhe, Germany, pp. 1081–1085. William Kufmann.

References II

Chmielewski, L. (2004).

Choice of the Hough transform for image registration.

In A. Nowakowski and B. Kosmowski (Eds.), Proc. SPIE, Volume 5505: Optical Methods, Sensors, Image Processing, and Visualization in Medicine, pp. 122–134. doi:10.1117/12.577912.

Chmielewski, L. J. (2006, Oct).

Fuzzy histograms, weak fuzzification and accumulation of periodic quantities. Application in two accumulation-based image processing methods.

Pattern Analysis & Applications 9(2-3), 189–210. doi:10.1007/s10044-006-0037-7.

Chmielewski, L. J. and M. Bator (2012, 24-26 Sep).

Hough transform for opaque circles measured from outside and fuzzy voting for and against.

In Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2012, Volume 7594 of Lecture Notes in Computer Science, Warsaw, Poland, pp. 313–320. Springer.

doi:10.1007/978-3-642-33564-8_38.

Chmielewski, L. J., M. Bator, and M. Olejniczak (2014, 15-17 Sep).

Advantages of using object-specific knowledge at an early processing stage in the detection of trees in LIDAR data. In Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2014, Volume 8671 of Lecture Notes in Computer Science, Warsaw, Poland, pp. 145–154. Springer. doi:10.1007/978-3-319-11331-9_18.
References III

Chmielewski, L. J., M. Bator, M. Zasada, et al. (2010, 20-22 Sep).

Fuzzy Hough transform-based methods for extraction and measurements of single trees in large-volume 3D terrestrial LIDAR data.

In Computer Vision and Graphics: Proc. Int. Conf. ICCVG 2010, Part I, Volume 6374 of Lecture Notes in Computer Science, Warsaw, Poland, pp. 265–274. Springer.

doi:10.1007/978-3-642-15910-7_30.

Chmielewski, L. J. and A. Orłowski (2015, 2-4 Sep).

Ground level recovery from Terrestrial Laser Scanning data with the Variably Randomized Iterated Hierarchical Hough Transform.

In G. Azzopardi and N. Petkov (Eds.), Computer Analysis of Images and Patterns: Proc. Int. Conf. CAIP 2015, Volume 9256 of Lecture Notes in Computer Science, Valletta, Malta, pp. 630–641. Springer. doi:10.1007/978-3-319-23192-1_53.

Cohen, M. and G. Toussaint (1977). On the detection of structures in noisy pictures. *Pattern Recognition 9*, 95–98.

Epanechnikov, V. A. (1969). Nonparametric estimation of a multidimensional probability density. *Theory Probab. Appl. 13*, 153–158.

References IV

Gach, P. (2013-2016). Rejestr Polskich Drzew Pomnikowych. rpdp.hostingasp.pl [Online; accessed 02 Jan 2017].

Gorte, B. (2015, 30 Apr). Tree separation and classification contest (within the IQumulus project). http://homepage.tudelft.nl/41s94/iqmulus/Contest3.html. [Online; accessed 19 May 2015].

Grant, W., R. Voorhies, and L. Itti (2013, Nov). Finding planes in LiDAR point clouds for real-time registration. In IEEE/RSJ Int. Conf. Intelligent Robots and Systems IROS 2013, pp. 4347–4354. doi:10.1109/IROS.2013.6696980.

Habib, A. and T. Schenk (1999, 9-11 Nov).
New approach for matching surfaces from laser scanners and optical sensors.
In B. M. Csatho (Ed.), Proc. Joint Workshop of ISPRS III/5 and III/2 on Mapping Surface Structure and Topography by Air-borne and Space-borne Lasers, La Jolla, San Diego, CA.

Hampel, F., E. Ronchetii, P. Rousseeuw, and W. Stahel (1986). *Robust Statistics: The Approach Based on Influence functions.* New York: John Wiley.

References V

Han, J., L. Kóczy, and T. Poston (1994). Fuzzy Hough transform. Pattern Recognition Letters 15(7), 649–658.

Huber, P. (2003). *Robust Statistics*. New York: John Wiley.

Hulik, R. et al. (2014). Continuous plane detection in point-cloud data based on 3D Hough Transform. Journal of Visual Communication and Image Representation 25(1), 86 – 97. doi:10.1016/j.jvcir.2013.04.001.

Jolion, J. and A. Rozenfeld (1989). A O(log n) pyramid Hough transform. Pattern Recognition Letters 9, 343–349.

Koronacki, J. and J. Mielniczuk (2004). Statystyka dla Studentów Kierunków Technicznych i Przyrodniczych (Drugie ed.). Warszawa: WNT.

References VI

Kulczycki, P. (2005). Estymatory Jądrowe w Analizie Systemowej. Warszawa: Wydawnictwa Naukowo-Techniczne.

Limberger, F. A. and M. M. Oliveira (2015). Real-time detection of planar regions in unorganized point clouds. *Pattern Recognition* 48(6), 2043-2053. doi:10.1016/j.patcog.2014.12.020.

Mardia, K. (1972). *Statistics of directional data*. London: Academic Press.

Meer, P. (2004). Robust techniques for computer vision. In G. Medioni and S. Kang (Eds.), *Emerging Topics in Computer Vision*, pp. 107–190. Upper Saddle River, NJ, USA: Prentice Hall

O'Rourke, J. and K. Sloan (1984). Dynamic quantization: Two adaptive data structures for multidimensional space. *IEEE Trans. PAMI 3*, 266–288.

< □ > < 同 > < E > < E > E = 900

References VII

Parzen, E. (1962). On estimation of a probability density function and mode. *Ann. Math. Statist. 33*, 1065–1076.

Rousseeuw, P. and A. Leroy (1987). *Robust Regression and Outlier Detection*. John Wiley.

Scott, D. (1992). *Multivariate density estimation: Theory, Practice, and Visualization*. New York: John Wiley.

Silverman, B. (1986). *Density Estimation for Statistics and Data Analysis.* London: Chapman & Hall.

Stereńczak, K. and J. Kozak (2011). Evaluation of digital terrain models generated in forest conditions from airborne laser scanning data acquired in two seasons. Scandinavian Journal of Forest Research 26(4), 374–384. doi:10.1080/02827581.2011.570781.

References VIII

Strauss, O. (1999). Use the Fuzzy Hough Transform towards reduction of the precision-uncertainty duality. *Pattern Recognition 32*, 1911–1922.

Tarsha-Kurdi, F. and P. Grussenmeyer (2007, Sep). Hough-transform and extended RANSAC algorithms for automatic detection of 3D building roof planes from Lidar data. In *Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007*, Volume XXXVI-3/W52, Espoo, Finland, pp. 407–412.

Thrift, P. and S. Dunn (1983). Approximating point-set images by line segments using a variance of the Hough transform. *Comp. Vision, Graph., and Image Proc. 21,* 383–394.

Veen, T. V. and F. Grœn (1981). Discretization errors in the Hough transform. Pattern Recognition 14, 137–145.

Wand, M. and M. Jones (1995). *Density Estimation for Statistics and Data Analysis.* London: Chapman & Hall.

< □ > < 同 > < E > < E > E = 900

References IX

Zasada, M., K. Stereńczak, W. Dudek, and A. Rybski (2013).

Horizon visibility and accuracy of stocking determination on circular sample plots using automated remote measurement techniques.

Forest Ecology and Management 302, 171–177. doi:10.1016/j.foreco.2013.03.041.

Zwiggelaar, R., T. Parr, J. Schumm, et al. (1999). Model-based detection of spiculated lesions in mammograms. Medical Image Analysis 3(1), 39-62.

Appendices • 0 0 0 0 Fuzzification

Histogram and fuzzy histogram Notions and formulae

- data (measurements): { \check{x}^k , $k \in \mathcal{K}$, $\mathcal{K} = 1, ..., k_u$ }; variable $x \in \mathcal{X}$; $\mathcal{X} = \mathbb{R} \cap [x_{\min}, x_{\max}]$.
- indexing function: $x \in \mathbb{R} \longrightarrow \tilde{i}(x) \in \mathbb{C}$ divides the domain \mathcal{X} into intervals
- histogram: $h_j = \sum_{k \in \mathcal{K}} \chi(j \tilde{i}(\check{x}^k)) , \quad j \in \mathcal{J}$, where $\chi(i) = \begin{cases} 1 & \text{when } i = 0 , \\ 0 & \text{when } i \neq 0 \end{cases}$ - characteristic function.
- fuzzy histogram: $h_j^f = \sum_{k \in \mathcal{K}} \mu(j \tilde{i}(\check{x}^k)), \ j \in \mathcal{J}$, where $\mu(\cdot) : \mathbb{C} \to \mathbb{R} \cap [0, 1]$ – membership function, called the fuzzification

function. $\mu(\cdot): \mathbb{C} \to \mathbb{R} \cap [0, 1]$ — membership function, can

• fuzzy histogram as a convolution: $h_j^f = \sum_{i \in \mathcal{I}} \mu(j-i) h_i , \ j \in \mathcal{J}$.

Limit fuzzification – aperiodic case Formulae

Appendices

- Indexing function: $\tilde{i}(x) = \operatorname{round}(x)$.
- Fuzzy histogram: $h_i^f = \sum_{j \in \mathcal{I}} \mu(i-j) h_j$.
- Continuous fuzzy histogram: $h^{f}(x) =$ $= \sum_{k \in \mathcal{K}} \mu(x - \tilde{i}(\check{x}^{k}))$ (as a function of data) $= \sum_{i \in \mathcal{I}} h_{i}\mu(x - i)$ (as a convolution). domains: $x \in \mathcal{X} = [x_{\min}, x_{\max}], i \in \mathcal{I}, k \in \mathcal{K}$
- Square fuzzification function

$$\mu_2(x) = \begin{cases} 1 - \left(\frac{x}{s}\right)^2 & \text{if } |x| \le s \\ 0 & \text{otherwise} \end{cases}.$$

Theorem If $\forall_{i \in \mathcal{I}}$ the support of $\mu_2(x - i)$ comprises the whole \mathcal{X} , i.e., $s = x_{\max} - x_{\min}$, then $s = s_l$ and the fuzzification is the limit one.

Limit fuzzification – periodic case Formulae

Appendices

- Indexing function: $\tilde{i}(\xi) = \operatorname{round}(\xi)$, where an auxiliary variable $\xi = \xi(\phi)$ is chosen so that for $\xi \in \mathbb{C}$ it is $\xi(\phi) = \tilde{i}(\phi)$.
- Fuzzification function cos²

$$\mu_c(\xi) = \left\{ egin{array}{c} \cos^2rac{\pi\phi(\xi)}{2s} & ext{if } \phi(\xi) \in [-s,s]\,, \ 0 & ext{otherwise }. \end{array}
ight.$$

 $\phi(\xi) = [\xi(\phi)]^{-1}$

Theorem If the support of $\mu_c(\xi)$ comprises the whole period T, i.e., s = T/2, then $s = s_l$ and the fuzzification is the limit one.

(日) (日) (日) (日) (日) (日) (日) (日)

Appendices $\circ \circ \circ$ Fuzzy histogram Fuzzy histograms – image processing: State of the art 1/2

- Hierarchical and weighted histograms: (Cohen and Toussaint 1977; Veen and Grœn 1981; Thrift and Dunn 1983; O'Rourke and Sloan 1984; Jolion and Rozenfeld 1989; Strauss 1999).
- Fuzzy Hough transform: (Han, Kóczy, and Poston 1994).
- Robust statistics: *Huber-type skipped mean*: (Hampel, Ronchetii, Rousseeuw, and Stahel 1986; Rousseeuw and Leroy 1987; Huber 2003), in Polish: (Koronacki and Mielniczuk 2004).
- Kernel estimation: square kernel function derived from the Epanechnikov function: (Parzen 1962; Epanechnikov 1969; Silverman 1986; Scott 1992; Wand and Jones 1995; Meer 2004), in Polish: (Kulczycki 2005).
- Periodic histogram and the function cos²: (Mardia 1972), in mammograms analysis: (Zwiggelaar, Parr, Schumm, et al. 1999).

Appendices -----Fuzzy histogram Fuzzy histograms – image processing: State of the art 2/2

- \bullet \uparrow Mainly from (Meer 2004). There, a discussion on scale in robust image analysis methods:
 - How to estimate the scale without knowing the statistical structure of the data distribution (noise), outliers?
 - Which coefficient should be used, to scale the estimate to the given application?
 - Complexity of the image processing algorithms usually makes it impossible to determine the statistical structure of the data.
- Conclusion: The question of scale is still open. This justifies the search for new solutions.
- Limit fuzzification, fuzzification degree, weak fuzzification esp. in the periodic case, clipped function cos² : (Chmielewski 2006)