Generating None-Plans
in Order to Find Plans’

Wojciech Penczek

a joint work with Michat Knapik and Artur Niewiadomski

Institute of Computer Sciences, PAS, Warsaw, and Siedlce University, Poland

MINI PW, the 24th of November 2016

'Best Paper Award at SEFM’15

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 1/35

Outline

@ Introduction
@ Related Work

@ Planics
@ TripICS

@ Idea of None-plans Reductions
@ Planning in PlanICS

e Simplified Planning Domain

e Plans and None-plans
@ Synthesis of None-Plans
@ Applying None-Plans to Find Plans
@ Experimental Results

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 2/35

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

Main Contributions

@ New web service composition systems - Planics and Tripics,

@ A new method for improving efficiency of algorithms solving
hard problems,

@ A new reduction method for planning,

@ Application of the results in the tool Planics.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 3/35

Introduction pelstedivork
PlanlCS
Idea of None-plans Reductions

Planning in PlaniCS

Related Work - Web Service Composition Systems

@ Entish - IOPR, a two phase planning by an ontology,

@ WSMO - ontology, IOPR, a formal goal, embedded rule
languages

@ WSMX - WSMO implementation, service registration,
service discovery by matchmaking, service activation by
adapters

@ SUPER - composition based on WSMO ontology and Al
algorithms

@ PlanlICS - a state-based approach, a two phase planning, a
simple rule language, the abstract planners based on GA
and SMT-solvers, the concrete planners based on GA, SA,
GEO, and SMT-solvers, and their combinations.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 4/35

Introduction pelstedivork
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

Related Work - Reduction Methods

@ Abstraction methods [Cousot, Cousot,],

@ Partial order reductions [Valmari, Peled, Godefroid, ...],

@ Symmetry reductions [Clarke, Emerson, Jha, Sistla, 1,

@ CEGAR - Counterexample Guided Abstraction [Clarke et
al.],

@ and others.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 5/35

Introduction pelstedivork
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

Web Service Composition Problem

Which service types and instances to choose?

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 6/35

Introduction pelstedivork
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

Web Service Composition Problem

Planics finds a solution!
Services proposing the best offers

Irrelevant service type ‘ '
PlaniCS | "

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 6/35

Introduction AL
PlanlCS
Idea of None-plans Reductions
Planning in PlanIiCS

Planics - Key Concepts

User intention

—— PlanICS——» Plan
(query)

@ The main goal: an arrangement of service executions
satisfying a user intention

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 7/35

Introduction AL
PlanlCS
Idea of None-plans Reductions
Planning in PlanIiCS

Planics - Key Concepts

Static knowledge
(ontology)

* Abstract

—— PlanICS——» Plan

User intention
(query)

@ The main goal: an arrangement of service executions
satisfying a user intention

@ Ontology - the types of services and objects

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 7/35

Introduction AL
PlanlCS
Idea of None-plans Reductions
Planning in PlanIiCS

Planics - Key Concepts

Static knowledge
(ontology)

* Abstract

User intention » PlanlCS ———p Plan
(query) Concrete

Dynamic knowledge
(WS offers)

@ The main goal: an arrangement of service executions
satisfying a user intention

@ Ontology - the types of services and objects

@ A two phase composition process: abstract (on types) and
concrete (on web services)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 7/35

Introduction AL
PlanlCS

Idea of None-plans Reductions

Planning in PlanIiCS

Architecture of Planics

BPEL export module

MultiSet
SMT Explorer

Abstract Concrete

Hybrid
planner planner

Parser

GUI

Ontology Service

controls all modules :
Register

ch Penczek & the PlanlCS te rder to Find Plans 8/35

Introduction AL
PlanlCS

Idea of None-plans Reductions

Planning in PlanIiCS

Architecture of Planics

BPEL export module

MultiSet
Explorer

Abstract
planner

Concrete
planner

Hybrid Hybrid

Parser

GUI

Ontology Service

controls all modules .
Register

ch Penczek & the PlanlCS te rder to Find Plans 8/35

Introduction AL
PlanlCS

Idea of None-plans Reductions

Planning in PlanIiCS

Architecture of Planics

BPEL export module

MultiSet
Explorer

Abstract
planner

Concrete
planner

Hybrid Hybrid

Parser

GUI

Ontology Service

controls all modules .
Register

ch Penczek & the PlanlCS te rder to Find Plans 8/35

Introduction Rolatediwens
PlanlCS
Idea of None-plans Reductions
Planning in PlaniCS

Tripics - Main ldeas

@ Tripics - a real-life application of Planics to planning trips
and travels around the world,

@ Tripics - a specialization of the concrete planning viewed as
a constrained optimization problem to the ontology
containing services provided by hotels, airlines, railways,
museums etc.,

@ Tripics finds an optimal plan satisfying the user’s
requirements by applying the concrete planners of Planics,

@ Abstract planning of Tripics - semi-automatic, the user
builds an abstract plan using a Graphical User Interface.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 9/35

Introduction AL
PlanlCS
Idea of None-plans Reductions

Planning in PlanIiCS

Architecture of Tripics

Offer
GuI collector
Concrete

Query builder planner

Validation
Plan presentation

Ontology

Generating None-Plans in Order to Find Pla

Introduction Rolatediwens
PlanlCS

Idea of None-plans Reductions
Planning in PlaniCS

General System Description

Tripics

A user-friendly planning of visits to cities (places), travels, and
entertainments, satisfying the user’s requirements.

User’s Requirements

Specification of cities, places, dates, means of travels, and
quality requirements (level of prices, quality of hotels, etc.).

Optimal Plan

A plan of highest quality according to the given requirements.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 11/35

Introduction AL
PlanlCS

Idea of None-plans Reductions

Planning in PlanIiCS

Specifying Requirements

Zoomn || Zoom Out || TERRAIN ~ | Zoom: 6| Warsaw Find City | Planning options || RUN PLANNER

P Wars

Map Sstelite

v Ber

many
aWolfsburg
jswick oMagdeburg

» Accommodation

¥ Attraction

Specify details of the attraction: Leipzig . Lublin
Types TOUR - Dresd) > ¥
P rany @ R elce

Begin: from| 2016-08-01, 1300 B to| 2016-08-02, 1300 L}

Duration (hws): from| 2 w5

Score: from| 2 o 10 Katowiceo Krakgw Raaszow

ore: 5
Price: from 0] 30

duremberg
o
Kosice

> Travel

\ugsburg

s
Munich
» Prague, Czech Republic K

09) Google, Inst. Geogr. Macianal Terma of Use

ech Penczek & the PlanlCS tea Generating None-Plans

Related Work
PlanlCS

Idea of None-plans Reductions

Introduction

Planning in PlaniCS

Plan Returned by Tripics

ZoomIn || ZoomOut || TERRAN ~ ~

Paland

b Warsaw

v Berlin, Germany
» Accommedation

» Attraction

v Attraction

Specify details of the attraction:
Type: CONCERT -

from | 201

Begin

Duration (hrs): from | 4

Score: from| 8.1
Frice from| 84
» Travel

» Warsaw, Poland

Find City || Planning options | RUN PLANNER

Map Satelite gen

5
Malmo.

Travel from Berlin to ¥
Den 1808 0937 Arr 1

1519

F Attraction: Concert in Berlin
1608 at 21 (4 hrs)

KB attraction: Tour n Beriin
= 1608 2t 15 (2 Ars)
Stay in Berlin (hotel, 3 stars)
From 1508 0 18
Price 1044, Score

Bydgos

Pc

o
Gdarisk

=

- Siautai
Klaipeda 2
Lith

Kaliningrad Ka
KanueiaHrpan

Gdgnia

Olsztyn

Travel from Warsaw to Berlin
Dep. 15,08, 14:05, Arr. 15.08,19:18

AV Price 170, Type train, Breaks O
Poznari r
oWolfsburg = Wah Jaw

wick oMagdeburg ;

Vi e 22115 oo i 22008 ool

Temmn cfline

Figure: The example plan

ch Penczek & the PlanlCS te

Generating None-Plans in

13,

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

General idea — intuition

D — a domain to search for a plan (difficult task!),

D’ — an abstract domain in which finding a plan is easier,
a plan in D’ does not need to correspond to a plan in D,
a none-plan in D’ corresponds to a none-plan in D,

find (the) none-plans in D’,

prune D from (the) none-plans of D’,
search for (the) plans in D pruned.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 14/35

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlanIiCS

Application to planning in PlanlCS

@ Given an ontology of object types and services (OWL-like
language),
@ Given a user query: (initial worlds, final worlds),
@ A world — a set of objects (each object has a type and
attributes),
@ A service: (in, inout, out, pre, post), where in, inout, out
are sets of objects,
@ pre — a boolean formula over the object attributes of in and
inout,
@ post — a boolean formula over the object attributes of inout
and out.
Task: Find all plans from some initial to some final world.
This problem is NP-complete.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 15/35

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlaniCS

Service composition in PlanICS

preconditions on object attributes postconditions on object attributes

preg postg
—>| Service B

ojciech Penczek & the PlanlCS t Generating None-Plans i

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlaniCS

Service composition in PlanICS

Initial
world

preconditions on object attributes postconditions on object attributes

post, preg prec
B2 -8
postg

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 16/35

Introduction AL
PlanlCS

Idea of None-plans Reductions
Planning in PlaniCS

Simplifying the planning domain

Idea — simplify services and worlds:
@ the simplified objects do not have attributes,
@ a simplified world — a multiset of objects,
@ a simplified service — (precondition, effect),
@ precondition — a multiset of objects (objects required),
@ effect — a multiset of objects (new objects added).

@ Let B be a set of services,
@ B’ —the set of simplified services of B,

@ The main Property of Abstraction: If B’ cannot be
composed into a plan, then B cannot either.

@ Goal: synthesize constraints of non-composability.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 17/35

Simplified Planning Domain

(Abstract) Planning Domain

(Abstract) Planning Domain P = (Wy,, F}, Fg, Act):
@ Wy C N” — a set of abstract worlds (multisets),
@ F;, Fg € Wy —initial, final worlds,
@ Act — a set of actions (simplified services),
where nis the number of all types of the objects.

For each act € Act:
@ pre(act) — precondition of act,
@ eff(act) — effect of act.
pre(act), eff(act) € N”.

Action act € Act is enabled in w € W, iff pre(act) < w and
the results of firing act: w % w + eff(act)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 18/35

Simplified Planning Domain

Given P = Wy, F, Fg, Act), B C Act
@ 7€ MN(w,B,u) iff

acty acto acty_q actp
T=W) — Wl — ... — Wp—1 — Wn
where wg = w, wy > W', and {acty,...,actp} C B

® U, er Upper, M(wi, B,wr) —the plans over B

Each plan starts from an initial world and its last world covers a
final world.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 19/35

Simplified Planning Domain

Exemplary planning domain

Actions:

@ make Vehicle:
needs nothing, builds vehicle

Vehicle @ makeCar:
AN needs vehicle, builds car
Car Boat @ makeBoat:
N Vs needs vehicle, builds boat
Amphibian @ makeAmphibian:
needs boat and car, builds
Vehicles’ inheritance amphibian
@ tinker:

needs amphibian and car, builds
two amphibians

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 20/35

Simplified Planning Domain

Exemplary planning domain, ctd

(1,0,0,0) Order of the objects:
Vehicle (Vehicle, Car, Boat, Amphibian)
(1,1,0,0) x(1,0,1,0) @ makeAmphibian:
c needs boat and car, builds
ar Boat o
amphibian
AN »
Amphibian pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(1,1,1,1) (2,1,1,0)
Vehicles’ inheritance eff(makeAmphibian) = (1,1,1,1)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 21/35

Simplified Planning Domain

Exemplary planning domain, ctd

(1,0,0,0) Order of the objects:
Vehicle (Vehicle, Car, Boat, Amphibian)
(1,1,0,0) x(1,0,1,0) @ makeAmphibian:
c needs boat and car, builds
ar Boat o
amphibian
AN »
Amphibian pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(1,1,1,1) (2,1,1,0)
Vehicles’ inheritance eff(makeAmphibian) = (1,1,1,1)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 21/35

Simplified Planning Domain

Exemplary planning domain, ctd

(1,0,0,0) Order of the objects:
Vehicle (Vehicle, Car, Boat, Amphibian)
(1,1,0,0) x(1,0,1,0) @ makeAmphibian:
c needs boat and car, builds
ar Boat o
amphibian
AN »
Amphibian pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(1,1,1,1) (2,1,1,0)
Vehicles’ inheritance eff(makeAmphibian) = (1,1,1,1)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 21/35

Simplified Planning Domain

Exemplary planning domain, ctd

(1,0,0,0) Order of the objects:
Vehicle (Vehicle, Car, Boat, Amphibian)
(1,1,0,0) x(1,0,1,0) @ makeAmphibian:
c needs boat and car, builds
ar Boat .
amphibian
AN »
Amphibian pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(1,1,1,1) (2,1,1,0)
Vehicles’ inheritance eff(makeAmphibian) = (1,1,1,1)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 21/35

Simplified Planning Domain

Exemplary planning domain, ctd
Actions:

Vehicle @ pre(makeCar) = (1,0,0,0)
eff(makeCar) = (1,1,0,0
N (makeBoat) = (1,0,0,0)
@ pre(makeBoat) = (1,0,0,
B
Car oat eff(makeBoat) = (1,0,1,0)
. ' / @ pre(makeAmphibian)=(2,1,1,0)
Amphibian eff(makeAmphibian) = (1,1,1,1)

Vehicles’ inheritance @ pre(tinker)=(2,2,1,1)
eff(tinker) = (2,2,2,2)

w; = (0,0,0,0) (one initial world)

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 22/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Classifying actions

Vinax - the largest number occurring in pre(act) for act € Act.
enact(A) = {act € Act | Z Vinax - eff(act’) > pre(act)}.
act/ €A
all actions that can be enabled by firing actions from A C Act,
we Wy, i>0

@ Gy = {act € Act | pre(act) < w} —the actions enabled in w,
@ Gy 4 = enact(Gy) — the actions enabled in i—th step

° Hs = Gj,
@ Hr, = G¥ 4\ G —the actions newly enabled in i—th step.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 23/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Classifying actions, ct'd

w,w € Wy

kgoal(w,w') = min({k € N'| Y Vi - eff(act) > w'})

acte Gy

the minimal step at which greedily fired actions cover ’.

Lemma A
@ kgoal(w,w’) < oo iff M(w,Act,w") # 0,
@ kgoal(w,w’) can be computed in time O(|Act|? - n).

Planning in P is easy.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 24/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Classifying actions

Lemma B
Let A C Act. If there is a plan over A, then A contains at least
one element from H;*' for all 0 < i < kgoal(wy, wr).

First easy reductions:
@ block all sets of actions that do not satisfy Lemma B.

More reductions: consider none-plans.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 25/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans

A C Act, w,w’ € Wy

Z(w,A,w) :={BCA|N(w,B,u) =10}

None-plan: a set of actions B which is not a support of any plan
starting at w and covering w’.

[(w) :={w"| ||| =1 Aw > w'} —unitary coordination vectors
of w

e.g., I((2,1,1,0)) = {(1,0,0,0),(0,1,0,0),(0,0,1,0)}

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 26/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans

Theorem

Z(w,AW) = U ﬂ (D(w, A, act) U 2A\{“°‘})

w’el(w’) acteA
wpw!” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 27/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem

Z(w,Aw)= (1 (D(w, A act) U2t

w’el(w’) acteA
wiw” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem
Z(wAw)= (1 (D(w, A act) U2t
w’el(w’) acteA
wiw” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

To find all B C A that do not make a plan from w to cover o’

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem

Z(w,Aw)= [(1 (D(w, A act) U2t
w’el(w’) acteA
wHw! eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

To find all B C A that do not make a plan from w to cover o’
take a coordinate w” of w’ that needs to be covered

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem

Z(w,Aw)= (1 (D(w, A act) U2t

w’€l(w’) actcA
wpw” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

To find all B C A that do not make a plan from w to cover o’
take a coordinate w” of w’ that needs to be covered
for each action act that could cover «” when fired

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem

Z(w,A W) = U ﬂ (D(w, A, act) U 2A\{a‘:t})
w’el(w’) acteA
wiw” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

To find all B C A that do not make a plan from w to cover o’
take a coordinate w” of w’ that needs to be covered

for each action act that could cover «” when fired

ensure that either act cannot be enabled and take it

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Characterisation of none-plans, ctd

Theorem

Z(w,Aw)= (1 (D(w, A act) U2/t
w’el(w’) acteA
wiw” eff(act)>w”

where D(w, A, act) = {BU {act} | B € Z(w, A\ {act}, pre(act))}

To find all B C A that do not make a plan from w to cover o’
take a coordinate w” of w’ that needs to be covered

for each action act that could cover «” when fired

ensure that either act cannot be enabled and take it

or throw act away.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 28/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans: tree encoding

{make Vehicle, makeCar, makeBoat}
target: (2,1,1,0)

Z((0,0,0,0), {make Vehicle, makeCar, makeBoat}, (2,1,1,0))

ojciech Penczek & the PlanlCS Generating None-Plans i er to Find Plans 29/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans: tree encoding

{make Vehicle, makeCar, makeBoat}
target: (2.1,1,0)

{make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat}
target: (1,0,0,0) target: (0,1,0,0) target: (0,0,1,0)

Z((0,0,0,0), {make Vehicle, makeCar, makeBoat}, (2,1,1,0)) =

U 2((0,0,0,0), {make Vehicle, makeCar, makeBoat}, w)
wel((2,1,1,0))

jciech Penczek & the PlanlCS teal in Order to Find Plans 29/:

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans: tree encoding

{make Vehicle, makeCar, makeBoat}
target: (2.1,1,0)

{make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat}
target: (1,0,0,0) target: (0,1,0,0) target: (0,0,1,0)
makeCar

{make Vehicle, makeBoat}
target: (1.0,0,0)

Z((0,0,0,0), {make Vehicle, makeCar, makeBoat}, (2,1,1,0)) =

U 2((0,0,0,0), {make Vehicle, makeCar, makeBoat}, w) =
wel((2,1,1,0))

make Vehicle, makeCar, makeBoat}, makeCar) U 24\{makeCar} ;
jciech Penczek & the PlanlCS teal g None-Plans in Order to Find Pl

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans: tree encoding

{make Vehicle, makeCar, makeBoat}
target: (2.1,1,0)

{make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat} {make Vehicle, makeCar, makeBoat}
target: (1,0,0,0) target: (0,1,0,0) target: (0,0,1,0)
makeCar

{make Vehicle, makeBoat}
target: (1.0,0,0)

Z((0,0,0,0), {make Vehicle, makeCar, makeBoat}, (2,1,1,0)) =

U 2((0,0,0,0), {make Vehicle, makeCar, makeBoat}, w) =
wel((2,1,1,0))

make Vehicle, makeCar, makeBoat}, makeCar) U 24\{makeCar} ;
jciech Penczek & the PlanlCS teal g None-Plans in Order to Find Pl

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

None-plans: the full tree unfolding

acts: makeVehicle, makeCar, makeBoat, makeAmphibian
gtz 0,0,0, 1)

et makeCar, makeBou
gt 0,0,0,0)

One can stop unfolding at depth k to underapproximate the
none-plan space.

iech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 30/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Back to the original domain

The SMT-formulae:

@ AP —encoding of the original domain plan space
(courtesy of PlanICS),

@ (. — blocking sets following from Lemma B,

@ NoPk —encoding of the none-plan space unfolding up to
k e NU{w}

A new encoding in the original domain plan space:

Z?Sk = AP ACc A -NoPk

A longer formula: easier or more difficult for an SMT-solver?

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 31/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Experimental results

Setup:
@ random ontologies produced by Ontology Generator
@ two experiments/ontology:

First — single plan synthesis
Total — all plan synthesis

Results for reduction:
@ First — usually substantial speedup at some depth
@ Total — always substantial speedup at some depth

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 32/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Experimental results, ct'd

100 %

-100%

NoRedTime—BestRedTime
NoRedTime

50

0

%

IS

1 First
1 Total

timeout of Total

H HHDHH HH 11l

T T
123 456 7 8 9101112131415161718192021222324
benchmark id

NoRedTime — time without reduction
BestRedTime — best time with reduction

h Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 33/35

Synthesis of None-Plans
Applying None-Plans to Find Plans
Plans and None-plans Experimental Results

Conclusions

@ A new web composition system Planics -
http://kus.ii.uph.edu.pl/en/

@ A new method for improving efficiency of algorithms solving
hard problems,

@ A new reduction method for planning,

@ Application of the results in the tool PlanICS: quite
impressive improvement in some cases.

Wojciech Penczek & the PlanlCS team Generating None-Plans in Order to Find Plans 34/35

Synthesis of None-Plans
Applying None-Plans to Find Plans

Plans and None-plans Experimental Results

Thank you!

	Introduction
	Related Work
	PlanICS
	Idea of None-plans Reductions
	Planning in PlanICS

	Simplified Planning Domain
	Plans and None-plans
	Synthesis of None-Plans
	Applying None-Plans to Find Plans
	Experimental Results

