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Planning in PlanICS

Main Contributions

New web service composition systems - PlanICS and TripICS,

A new method for improving efficiency of algorithms solving
hard problems,

A new reduction method for planning,

Application of the results in the tool PlanICS.
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PlanICS
Idea of None-plans Reductions
Planning in PlanICS

Related Work - Web Service Composition Systems

Entish - IOPR, a two phase planning by an ontology,
WSMO - ontology, IOPR, a formal goal, embedded rule
languages
WSMX - WSMO implementation, service registration,
service discovery by matchmaking, service activation by
adapters
SUPER - composition based on WSMO ontology and AI
algorithms
PlanICS - a state-based approach, a two phase planning, a
simple rule language, the abstract planners based on GA
and SMT-solvers, the concrete planners based on GA, SA,
GEO, and SMT-solvers, and their combinations.
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PlanICS
Idea of None-plans Reductions
Planning in PlanICS

Related Work - Reduction Methods

Abstraction methods [Cousot, Cousot, ....],

Partial order reductions [Valmari, Peled, Godefroid, ...],

Symmetry reductions [Clarke, Emerson, Jha, Sistla, ..... ],

CEGAR – Counterexample Guided Abstraction [Clarke et
al.],

and others.
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Planning in PlanICS

Web Service Composition Problem

Which service types and instances to choose?

Services of some type
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Web Service Composition Problem

PlanICS finds a solution!
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PlanICS - Key Concepts

PlanICS
User intention

(query)

Abstract 
Plan

Concrete

Static knowledge 
(ontology)

Dynamic knowledge 
(WS offers)

The main goal: an arrangement of service executions
satisfying a user intention
Ontology - the types of services and objects
A two phase composition process: abstract (on types) and
concrete (on web services)
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Plans and None-plans

Related Work
PlanICS
Idea of None-plans Reductions
Planning in PlanICS

TripICS - Main Ideas

TripICS - a real-life application of PlanICS to planning trips
and travels around the world,
TripICS - a specialization of the concrete planning viewed as
a constrained optimization problem to the ontology
containing services provided by hotels, airlines, railways,
museums etc.,
TripICS finds an optimal plan satisfying the user’s
requirements by applying the concrete planners of PlanICS,
Abstract planning of TripICS - semi-automatic, the user
builds an abstract plan using a Graphical User Interface.
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GUI

Query builder
Validation

Plan presentation
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General System Description

TripICS

A user-friendly planning of visits to cities (places), travels, and
entertainments, satisfying the user’s requirements.

User’s Requirements
Specification of cities, places, dates, means of travels, and
quality requirements (level of prices, quality of hotels, etc.).

Optimal Plan
A plan of highest quality according to the given requirements.
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Plan Returned by TripICS

Figure: The example plan
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Related Work
PlanICS
Idea of None-plans Reductions
Planning in PlanICS

General idea – intuition

D – a domain to search for a plan (difficult task!),

D’ – an abstract domain in which finding a plan is easier,
a plan in D’ does not need to correspond to a plan in D,
a none-plan in D’ corresponds to a none-plan in D,
find (the) none-plans in D’,

prune D from (the) none-plans of D’,
search for (the) plans in D pruned.
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Related Work
PlanICS
Idea of None-plans Reductions
Planning in PlanICS

Application to planning in PlanICS

Given an ontology of object types and services (OWL-like
language),
Given a user query: (initial worlds, final worlds),
A world – a set of objects (each object has a type and
attributes),
A service: (in, inout, out, pre, post), where in, inout, out
are sets of objects,
pre – a boolean formula over the object attributes of in and
inout,
post – a boolean formula over the object attributes of inout
and out.

Task: Find all plans from some initial to some final world.
This problem is NP-complete.
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Service composition in PlanICS

preconditions on object attributes postconditions on object attributes

Initial
world

World 0 World 1Service A Service B Service C

Final
world

preA

postA preB postB preC

postC

Planning – composition of services (a huge number of plans)
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Plans and None-plans

Related Work
PlanICS
Idea of None-plans Reductions
Planning in PlanICS

Simplifying the planning domain

Idea – simplify services and worlds:
the simplified objects do not have attributes,
a simplified world – a multiset of objects,
a simplified service – (precondition, effect),
precondition – a multiset of objects (objects required),
effect – a multiset of objects (new objects added).

Let B be a set of services,
B’ – the set of simplified services of B,
The main Property of Abstraction: If B’ cannot be
composed into a plan, then B cannot either.
Goal: synthesize constraints of non-composability.
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Plans and None-plans

(Abstract) Planning Domain

(Abstract) Planning Domain P = (WH,FI ,FG,Act):
WH ⊆ Nn – a set of abstract worlds (multisets),
FI ,FG ⊆ WH – initial, final worlds,
Act – a set of actions (simplified services),

where n is the number of all types of the objects.

For each act ∈ Act :
pre(act) – precondition of act,
eff(act) – effect of act.

pre(act), eff(act) ∈ Nn.

Action act ∈ Act is enabled in ω ∈ WH iff pre(act) ≤ ω and
the results of firing act: ω act→ ω + eff(act)
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Plans

Given P = (WH,FI ,FG,Act), B ⊆ Act

π ∈ Π(ω,B, ω′) iff

π = ω0
act1→ ω1

act2→ . . .
actn−1→ ωn−1

actn→ ωn

where ω0 = ω, ωn ≥ ω′, and {act1, . . . , actn} ⊆ B⋃
ωI∈FI

⋃
ωF∈FG

Π(ωI ,B, ωF ) – the plans over B

Each plan starts from an initial world and its last world covers a
final world.
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Plans and None-plans

Exemplary planning domain

Vehicle

Car Boat

Amphibian

Vehicles’ inheritance

Actions:
makeVehicle:
needs nothing, builds vehicle
makeCar :
needs vehicle, builds car
makeBoat :
needs vehicle, builds boat
makeAmphibian:
needs boat and car, builds
amphibian
tinker :
needs amphibian and car, builds
two amphibians
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Simplified Planning Domain

Plans and None-plans

Exemplary planning domain, ct’d

Vehicle

(1,0,0,0)

Car

(1,1,0,0)

Boat

(1,0,1,0)

Amphibian

(1,1,1,1)

Vehicles’ inheritance

Order of the objects:
(Vehicle,Car ,Boat ,Amphibian)

makeAmphibian:
needs boat and car, builds
amphibian

pre(makeAmphibian) =
(1,0,1,0) + (1,1,0,0) =
(2,1,1,0)

eff(makeAmphibian) = (1,1,1,1)
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Plans and None-plans

Exemplary planning domain, ct’d

Vehicle

Car Boat

Amphibian

Vehicles’ inheritance

Actions:
pre(makeVehicle) = (0,0,0,0)
eff(makeVehicle) = (1,0,0,0)

pre(makeCar) = (1,0,0,0)
eff(makeCar) = (1,1,0,0)

pre(makeBoat) = (1,0,0,0)
eff(makeBoat) = (1,0,1,0)

pre(makeAmphibian)=(2,1,1,0)
eff(makeAmphibian) = (1,1,1,1)

pre(tinker)=(2,2,1,1)
eff(tinker) = (2,2,2,2)

ωI = (0,0,0,0) (one initial world)
ωF = (0,0,0,1) (one final world)
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Plans and None-plans

Synthesis of None-Plans
Applying None-Plans to Find Plans
Experimental Results

Classifying actions

Vmax - the largest number occurring in pre(act) for act ∈ Act .

enact(A) = {act ∈ Act |
∑

act′∈A

Vmax · eff(act′) ≥ pre(act)}.

all actions that can be enabled by firing actions from A ⊆ Act ,

ω ∈ WH, i > 0
Gω

0 = {act ∈ Act | pre(act) ≤ ω} – the actions enabled in ω,
Gω

i+1 = enact(Gω
i ) – the actions enabled in i–th step

Hω
0 = Gω

0 ,
Hω

i+1 = Gω
i+1 \Gω

i – the actions newly enabled in i–th step.
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Plans and None-plans

Synthesis of None-Plans
Applying None-Plans to Find Plans
Experimental Results

Classifying actions, ct’d

ω, ω′ ∈ WH

kgoal(ω, ω′) = min({k ∈ N |
∑

act∈Gω
k

Vmax · eff(act) ≥ ω′})

the minimal step at which greedily fired actions cover ω′.

Lemma A
kgoal(ω, ω′) <∞ iff Π(ω,Act , ω′) 6= ∅,
kgoal(ω, ω′) can be computed in time O(|Act |2 · n).

Planning in P is easy.
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Plans and None-plans

Synthesis of None-Plans
Applying None-Plans to Find Plans
Experimental Results

Classifying actions

Lemma B
Let A ⊆ Act . If there is a plan over A, then A contains at least
one element from HωI

i for all 0 ≤ i ≤ kgoal(ωI , ωF ).

First easy reductions:
block all sets of actions that do not satisfy Lemma B.

More reductions: consider none-plans.
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Plans and None-plans

Synthesis of None-Plans
Applying None-Plans to Find Plans
Experimental Results

None-plans

A ⊆ Act , ω, ω′ ∈ WH

Z(ω,A, ω′) := {B ⊆ A | Π(ω,B, ω′) = ∅}

None-plan: a set of actions B which is not a support of any plan
starting at ω and covering ω′.

I(ω) := {ω′ | ‖ω′‖ = 1 ∧ ω ≥ ω′} – unitary coordination vectors
of ω

e.g., I((2,1,1,0)) = {(1,0,0,0), (0,1,0,0), (0,0,1,0)}
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Synthesis of None-Plans
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Experimental Results

Characterisation of none-plans

Theorem

Z(ω,A, ω′) =
⋃

ω′′∈I(ω′)
ω 6≥ω′′

⋂
act∈A

eff(act)≥ω′′

(
D(ω,A, act) ∪ 2A\{act})

where D(ω,A, act) = {B ∪ {act} | B ∈ Z(ω,A \ {act}, pre(act))}
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Synthesis of None-Plans
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Characterisation of none-plans, ct’d

Theorem

Z(ω,A, ω′) =
⋃

ω′′∈I(ω′)
ω 6≥ω′′

⋂
act∈A

eff(act)≥ω′′

(
D(ω,A, act) ∪ 2A\{act})

where D(ω,A, act) = {B ∪ {act} | B ∈ Z(ω,A \ {act}, pre(act))}

To find all B ⊆ A that do not make a plan from ω to cover ω′

take a coordinate ω′′ of ω′ that needs to be covered
for each action act that could cover ω′′ when fired
ensure that either act cannot be enabled and take it
or throw act away.
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Synthesis of None-Plans
Applying None-Plans to Find Plans
Experimental Results

None-plans: tree encoding

{makeVehicle,makeCar ,makeBoat}
target : (2,1,1,0)

{makeVehicle,makeCar ,makeBoat}
target : (1,0,0,0)

{makeVehicle,makeCar ,makeBoat}
target : (0,1,0,0)

{makeVehicle,makeCar ,makeBoat}
target : (0,0,1,0)

{makeVehicle,makeBoat}
target : (1,0,0,0)

. . .. . .

. . .

. . .. . .

makeCar

Z((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat}, (2, 1, 1, 0)) =⋃
ω∈I((2,1,1,0))

Z((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat}, ω) =

D((0, 0, 0, 0), {makeVehicle,makeCar ,makeBoat},makeCar) ∪ 2A\{makeCar} ∪ . . .
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None-plans: the full tree unfolding
acts: makeVehicle, makeCar, makeBoat, makeAmphibian

trgt: (0, 0, 0, 1)

acts: makeVehicle, makeCar, makeBoat, makeAmphibian
trgt: (0, 0, 0, 1)

acts: makeVehicle, makeCar, makeBoat
trgt: (2, 1, 1, 0)

 makeAmphibian

acts: makeVehicle, makeCar, makeBoat
trgt: (1, 0, 0, 0)

acts: makeVehicle, makeCar, makeBoat
trgt: (0, 1, 0, 0)

acts: makeVehicle, makeCar, makeBoat
trgt: (0, 0, 1, 0)

acts: makeCar, makeBoat
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

 makeCar

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

 makeCar

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle, makeBoat
trgt: (1, 0, 0, 0)

acts: makeBoat
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle
trgt: (1, 0, 0, 0)

 makeBoat

acts: makeVehicle
trgt: (1, 0, 0, 0)

acts: 
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle, makeCar
trgt: (1, 0, 0, 0)

acts: makeCar
trgt: (0, 0, 0, 0)

 makeVehicle

acts: makeVehicle
trgt: (1, 0, 0, 0)

 makeCar

One can stop unfolding at depth k to underapproximate the
none-plan space.
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Back to the original domain

The SMT-formulae:
AP – encoding of the original domain plan space
(courtesy of PlanICS),
CL – blocking sets following from Lemma B,
NOPk – encoding of the none-plan space unfolding up to
k ∈ N ∪ {ω}

A new encoding in the original domain plan space:

ÃP
k

= AP ∧ CL ∧ ¬NOPk

A longer formula: easier or more difficult for an SMT-solver?
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Experimental results

Setup:
random ontologies produced by Ontology Generator
two experiments/ontology:

First – single plan synthesis
Total – all plan synthesis

Results for reduction:
First – usually substantial speedup at some depth
Total – always substantial speedup at some depth
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Experimental results, ct’d
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NoRedTime – time without reduction
BestRedTime – best time with reduction
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Conclusions

A new web composition system PlanICS -
http://kus.ii.uph.edu.pl/en/

A new method for improving efficiency of algorithms solving
hard problems,

A new reduction method for planning,

Application of the results in the tool PlanICS: quite
impressive improvement in some cases.
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Thank you!
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